Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 4, Pages 201–209
DOI: https://doi.org/10.21538/0134-4889-2019-25-4-201-209
(Mi timm1686)
 

On Periodic Groups with a Regular Automorphism of Order 4

A. I. Sozutov

Siberian Federal University, Krasnoyarsk
References:
Abstract: We study periodic groups of the form $G=F\leftthreetimes\langle a\rangle$ with the conditions $C_F(a)=1$ and $|a|=4$. The mapping $a:\,F\to F$ defined by the rule $t\to t^a=a^{-1}ta$ is a fixed-point-free (regular) automorphism of the group $F$. In this case, a finite group $F$ is solvable and its commutator subgroup is nilpotent (Gorenstein and Herstein, 1961), and a locally finite group $F$ is solvable and its second commutator subgroup is contained in the center $Z(F)$ (Kovács, 1961). It is unknown whether a periodic group $F$ is always locally finite (Shumyatsky's Question 12.100 from {The Kourovka Notebook} ). We establish the following properties of groups. For $\pi=\pi(F)\setminus\pi(C_F(a^2))$, the group $F$ is $\pi$-closed and the subgroup $O_\pi(F)$ is abelian and is contained in $Z([a^2,F])$ (Theorem 1). A group $F$ without infinite elementary abelian $a^2$‑admissible subgroups is locally finite (Theorem 2). In a nonlocally finite group $F$, there is a nonlocally finite $a$-admissible subgroup factorizable by two locally finite $a$-admissible subgroups (Theorem 3). For any positive integer $n$ divisible by an odd prime, we give examples of nonlocally finite periodic groups with a regular automorphism of order $n$.
Keywords: periodic group, regular (fixed-point-free) automorphism, solvability, local finiteness, nilpotency.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00566 A
This work was supported by the Russian Foundation for Basic Research (project № 19-01-00566 A).
Received: 13.07.2019
Revised: 30.09.2019
Accepted: 21.10.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 313, Issue 1, Pages S185–S193
DOI: https://doi.org/10.1134/S0081543821030196
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 20F50
Language: Russian
Citation: A. I. Sozutov, “On Periodic Groups with a Regular Automorphism of Order 4”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 4, 2019, 201–209; Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1 (2021), S185–S193
Citation in format AMSBIB
\Bibitem{Soz19}
\by A.~I.~Sozutov
\paper On Periodic Groups with a Regular Automorphism of Order~4
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 4
\pages 201--209
\mathnet{http://mi.mathnet.ru/timm1686}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-4-201-209}
\elib{https://elibrary.ru/item.asp?id=41455537}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 313
\issue , suppl. 1
\pages S185--S193
\crossref{https://doi.org/10.1134/S0081543821030196}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000501769500022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078538994}
Linking options:
  • https://www.mathnet.ru/eng/timm1686
  • https://www.mathnet.ru/eng/timm/v25/i4/p201
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :69
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024