Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 4, Pages 184–188
DOI: https://doi.org/10.21538/0134-4889-2019-25-4-184-188
(Mi timm1684)
 

On genetic codes of certain groups with 3-transpositions

V. M. Sinitsin

Siberian Federal University, Krasnoyarsk
References:
Abstract: Coxeter groups have numerous applications in mathematics and beyond, and B. Fischer's 3-transposition groups underly the internal geometric analysis in the theory of finite (simple) groups. The intersection of these classes of groups consists of finite Weyl groups $W(A_n)\simeq S_{n+1}$, $W(D_n)$, and $W(E_n)$ for $n=6,7,8$, simple finite-dimensional algebras, and Lie groups. In previous papers by A. I. Sozutov, A. A. Kuznetsov, and the author, systems $S$ of generating transvections (3-transpositions) of groups $Sp_{2m}(2)$ and $O^\pm_{2m}(2)$ were found such that the graphs $\Gamma(S)$ are trees. A set $\{\Gamma_n\}$, $n\geq m$, of nested graphs is called an $E$-series if these graphs are trees, contain the subgraph $E_6$, and their subgraphs with vertices $m,m+1,\ldots,n$ are simple chains. In the present paper, we find genetic codes of the groups $Sp_{2m}(2)$ and $O^\pm_{2m}(2)$, $8\leq 2m \leq 20$; these codes are close to the genetic codes of some Coxeter groups. Our main hypothesis is the following: the groups $Sp_{2m}(2)$ and $O^\pm_{2m}(2)$ (cases (ii)–(iii) in Fischer's theorem) can be obtained from the corresponding infinite Coxeter groups with the use of one or two additional relations of the form $w^2=1$. The graphs $I_n$ considered in this paper contain the subgraph $E_6$ and comprise an $E$-series of nested graphs $\{I_n\,\mid\,n=7, 8,\ldots\}$, in which the subgraph $I_n\setminus E_6$ is a simple chain. We prove that the isomorphisms $X(I_{4k+1})\simeq Sp_{4k}(2)\times Z_2$ and $X(I_{2m})\simeq O^\pm_{2m}(2)$ (the sign $\pm$ depends on $m$) hold for the groups $X(I_n)$ obtained from the Coxeter groups $G(I_n)$ by imposing an additional relation $(s_4^ts_7)^2=1$, where $t=s_3s_2s_1s_5s_6s_3s_2s_5s_3s_4$, if $n=4k +\delta$ ($\delta=0,1,2$). The proof uses the Todd–Coxeter algorithm from the GAP system.
Keywords: Keywords: genetic code, Coxeter group, Coxeter graph, Weyl group, 3-transposition group, symplectic transvection.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00566 А
This work was supported by the Russian Foundation for Basic Research (project no. 19-01-00566 A).
Received: 17.09.2019
Revised: 25.10.2019
Accepted: 18.11.2019
Bibliographic databases:
Document Type: Article
UDC: 512.544
Language: Russian
Citation: V. M. Sinitsin, “On genetic codes of certain groups with 3-transpositions”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 4, 2019, 184–188
Citation in format AMSBIB
\Bibitem{Sin19}
\by V.~M.~Sinitsin
\paper On genetic codes of certain groups with 3-transpositions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 4
\pages 184--188
\mathnet{http://mi.mathnet.ru/timm1684}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-4-184-188}
\elib{https://elibrary.ru/item.asp?id=41455535}
Linking options:
  • https://www.mathnet.ru/eng/timm1684
  • https://www.mathnet.ru/eng/timm/v25/i4/p184
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :58
    References:26
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024