Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 4, Pages 155–163
DOI: https://doi.org/10.21538/0134-4889-2019-25-4-155-163
(Mi timm1681)
 

This article is cited in 1 scientific paper (total in 1 paper)

Finite groups with supersoluble subgroups of given orders

V. S. Monakhova, V. N. Tyutyanovb

a Gomel State University named after Francisk Skorina
b Gomel Branch of International University "MITSO"
Full-text PDF (200 kB) Citations (1)
References:
Abstract: We study a finite group $G$ with the following property: for any of its maximal subgroups $H$, there exists a subgroup $H_1$ such that $|H_1|=|H|$ and $H_1\in \frak F$, where $\frak F$ is the formation of all nilpotent groups or all supersoluble groups. We prove that, if $\frak F=\frak N$ is the formation of all nilpotent groups and $G$ is nonnilpotent, then $|\pi (G)|=2$ and $G$ has a normal Sylow subgroup. For the formation $\frak F=\frak U$ of all supersoluble groups and a soluble group $G$ with the above property, we prove that $G$ is supersoluble, or $2\le |\pi (G)|\le 3$; if $|\pi (G)|=3$, then $G$ has a Sylow tower of supersoluble type; if $|\pi (G)|=2$, then either $G$ has a normal Sylow subgroup or, for the largest $p\in \pi (G)$, some maximal subgroup of a Sylow $p$-subgroup is normal in $G$. If $G$ is nonsoluble and, for each maximal subgroup of $G$, there exists a supersoluble subgroup of the same order, then every nonabelian composition factor of $G$ is isomorphic to $PSL_2(p)$ for some prime $p$; we list all such values of $p$.
Keywords: finite group, soluble group, maximal subgroup, nilpotent subgroup, supersoluble subgroup.
Received: 15.04.2019
Revised: 27.06.2019
Accepted: 08.07.2019
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20D10, 20D20, 20E28
Language: Russian
Citation: V. S. Monakhov, V. N. Tyutyanov, “Finite groups with supersoluble subgroups of given orders”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 4, 2019, 155–163
Citation in format AMSBIB
\Bibitem{MonTyu19}
\by V.~S.~Monakhov, V.~N.~Tyutyanov
\paper Finite groups with supersoluble subgroups of given orders
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 4
\pages 155--163
\mathnet{http://mi.mathnet.ru/timm1681}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-4-155-163}
\elib{https://elibrary.ru/item.asp?id=41455532}
Linking options:
  • https://www.mathnet.ru/eng/timm1681
  • https://www.mathnet.ru/eng/timm/v25/i4/p155
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:223
    Full-text PDF :65
    References:27
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024