Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 4, Pages 118–128
DOI: https://doi.org/10.21538/0134-4889-2019-25-4-118-128
(Mi timm1676)
 

Semifield planes of rank 2 admitting the group $S_3$

O. V. Kravtsova, T. V. Moiseenkova

Siberian Federal University, Krasnoyarsk
References:
Abstract: One of the classical problems in projective geometry is to construct an object from known constraints on its automorphisms. We consider finite projective planes coordinatized by a semifield, i.e., by an algebraic system satisfying all axioms of a skew-field except for the associativity of multiplication. Such a plane is a translation plane admitting a transitive elation group with an affine axis. Let $\pi$ be a semifield plane of order $p^{2n}$ with a kernel containing $GF(p^n)$ for prime $p$, and let the linear autotopism group of $\pi$ contain a subgroup $H$ isomorphic to the symmetric group $S_3$. For the construction and analysis of such planes, we use a linear space and a spread set, which is a special family of linear mappings. We find a matrix representation for the subgroup $H$ and for the spread set of a semifield plane if $p=2$ and if $p>2$. We also study the existence of central collineations in $H$. It is proved that a semifield plane of order $3^{2n}$ with kernel $GF(3^n)$ admits no subgroups isomorphic to $S_3$ in the linear autotopism group. Examples of semifield planes of order 16 and 625 admitting $S_3$ are found. The obtained results can be generalized for semifield planes of rank greater than 2 and can be applied, in particular, for studying the known hypothesis that the full collineation group of any finite non-Desarguesian semifield plane is solvable.
Keywords: semifield plane, autotopism group, symmetric group, Baer involution, homology, spread set.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00566 А
This work was supported by the Russian Foundation for Basic Research (project no. 19-01-00566 А).
Received: 25.07.2019
Revised: 07.10.2019
Accepted: 14.10.2019
Bibliographic databases:
Document Type: Article
UDC: 519.145
MSC: 51A35, 51A40, 20B25
Language: Russian
Citation: O. V. Kravtsova, T. V. Moiseenkova, “Semifield planes of rank 2 admitting the group $S_3$”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 4, 2019, 118–128
Citation in format AMSBIB
\Bibitem{KraMoi19}
\by O.~V.~Kravtsova, T.~V.~Moiseenkova
\paper Semifield planes of rank 2 admitting the group $S_3$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 4
\pages 118--128
\mathnet{http://mi.mathnet.ru/timm1676}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-4-118-128}
\elib{https://elibrary.ru/item.asp?id=41455527}
Linking options:
  • https://www.mathnet.ru/eng/timm1676
  • https://www.mathnet.ru/eng/timm/v25/i4/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :41
    References:29
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024