Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 4, Pages 64–68
DOI: https://doi.org/10.21538/0134-4889-2019-25-4-64-68
(Mi timm1670)
 

This article is cited in 2 scientific papers (total in 2 papers)

On Some Groups of 2-Rank 1

B. E. Durakov

Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk
Full-text PDF (161 kB) Citations (2)
References:
Abstract: The structure of finite groups of 2-rank 1 is largely defined by the classical Burnside and Brauer–Suzuki theorems. Burnside proved that all elements of odd order of a finite group with a cyclic 2-Sylow subgroup form a normal subgroup. S.I. Adyan showed that this statement does not hold in the class of periodic groups even in the case where a Sylow 2-subgroup has order 2 and coincides with the center of the group. The results of Burnside, Brauer, and Suzuki can be formulated as one theorem: in a finite group $G$ of 2-rank 1, the image of any involution in the quotient group $G/O(G)$ lies in the center of this quotient group. It is unknown whether the same statement holds for a periodic group $G$ (V.P. Shunkov's Question 4.75 from {The Kourovka Notebook}). There is no answer even when the centralizer of an involution $i$ is a locally cyclic group (V.D. Mazurov's Question 15.54 from {The Kourovka Notebook}). In Theorem 1, we give a partial affirmative answer to Question 4.75 under an additional condition: in the group $G$ an involution $i$ generates a finite subgroup with any element of order not divisible by 4. In particular, Question 4.75 is solved positively in the classes of binary finite and conjugate binary finite groups. In Theorem 2, we study the structure of a nonlocally finite group $G$ with a finite involution and an involution $i$ whose centralizer is a locally cyclic 2-group. An involution $i$ of a group $G$ is called {finite} if the subgroup $\langle i,i^g \rangle$ is finite for every $g\in G$. In particular, Theorem 2 defines the structure of a counterexample (under the assumption of its existence) to Question 15.54.
Keywords: group of 2-rank 1, periodic group, locally finite group, finite involution.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00566 A
This work was supported by the Russian Foundation for Basic Research (project no. 19-01-00566 A).
Received: 05.08.2019
Revised: 26.09.2019
Accepted: 30.09.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 313, Issue 1, Pages S54–S57
DOI: https://doi.org/10.1134/S008154382103007X
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 20F50, 20E28
Language: Russian
Citation: B. E. Durakov, “On Some Groups of 2-Rank 1”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 4, 2019, 64–68; Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1 (2021), S54–S57
Citation in format AMSBIB
\Bibitem{Dur19}
\by B.~E.~Durakov
\paper On Some Groups of 2-Rank~1
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 4
\pages 64--68
\mathnet{http://mi.mathnet.ru/timm1670}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-4-64-68}
\elib{https://elibrary.ru/item.asp?id=41455521}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 313
\issue , suppl. 1
\pages S54--S57
\crossref{https://doi.org/10.1134/S008154382103007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000501769500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078516471}
Linking options:
  • https://www.mathnet.ru/eng/timm1670
  • https://www.mathnet.ru/eng/timm/v25/i4/p64
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024