Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 4, Pages 44–51
DOI: https://doi.org/10.21538/0134-4889-2019-25-4-44-51
(Mi timm1668)
 

Inverse Problems in the Theory of Distance-Regular Graphs: Dual 2-Designs

I. N. Belousovab, A. A. Makhnevab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: Let $\Gamma$ be a distance-regular graph of diameter 3 with a strongly regular graph $\Gamma_3$. Finding the parameters of $\Gamma_3$ from the intersection array of $\Gamma$ is a direct problem, and finding the intersection array of $\Gamma$ from the parameters of $\Gamma_3$ is its inverse. The direct and inverse problems were solved by A.A. Makhnev and M.S. Nirova: if a graph $\Gamma$ with intersection array $\{k,b_1,b_2;1,c_2,c_3\}$ has eigenvalue $\theta_2=-1$, then the graph complementary to $\Gamma_3$ is pseudo-geometric for $pG_{c_3}(k,b_1/c_2)$. Conversely, if $\Gamma_3$ is a pseudo-geometric graph for $pG_{\alpha}(k,t)$, then $\Gamma$ has intersection array $\{k,c_2t,k-\alpha+1;1,c_2,\alpha\}$, where $k-\alpha+1\le c_2t<k$ and $1\le c_2\le \alpha$. Distance-regular graphs $\Gamma$ of diameter 3 such that the graph $\Gamma_3$ ($\bar \Gamma_3$) is pseudogeometric for a net or a generalized quadrangle were studied earlier. In this paper, we study intersection arrays of distance-regular graphs $\Gamma$ of diameter 3 such that the graph $\Gamma_3$ ($\bar \Gamma_3$) is pseudogeometric for a dual 2-design $pG_{t+1}(l,t)$. New infinite families of feasible intersection arrays are found: $\{m(m^2-1),m^2(m-1),m^2;1,1,(m^2-1)(m-1)\}$, $\{m(m+1),(m+2)(m-1),m+2;1,1,m^2-1\}$, and $\{2m(m-1),(2m-1)(m-1),2m-1;1,1,2(m-1)^2\}$, where $m\equiv\pm 1$ (mod 3). The known families of Steiner 2‑designs are unitals, designs corresponding to projective planes of even order containing a hyperoval, designs of points and lines of projective spaces $PG(n,q)$, and designs of points and lines of affine spaces $AG(n,q)$. We find feasible intersection arrays of a distance-regular graph $\Gamma$ of diameter 3 such that the graph $\Gamma_3$ ($\bar \Gamma_3$) is pseudogeometric for one of the known Steiner 2-designs.
Keywords: distance-regular graph, dual 2-design.
Received: 01.08.2019
Revised: 08.11.2019
Accepted: 25.11.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 313, Issue 1, Pages S14–S20
DOI: https://doi.org/10.1134/S0081543821030032
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C25
Language: Russian
Citation: I. N. Belousov, A. A. Makhnev, “Inverse Problems in the Theory of Distance-Regular Graphs: Dual 2-Designs”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 4, 2019, 44–51; Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1 (2021), S14–S20
Citation in format AMSBIB
\Bibitem{BelMak19}
\by I.~N.~Belousov, A.~A.~Makhnev
\paper Inverse Problems in the Theory of Distance-Regular Graphs: Dual 2-Designs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 4
\pages 44--51
\mathnet{http://mi.mathnet.ru/timm1668}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-4-44-51}
\elib{https://elibrary.ru/item.asp?id=41455519}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 313
\issue , suppl. 1
\pages S14--S20
\crossref{https://doi.org/10.1134/S0081543821030032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000501769500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078532858}
Linking options:
  • https://www.mathnet.ru/eng/timm1668
  • https://www.mathnet.ru/eng/timm/v25/i4/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024