Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 3, Pages 141–152
DOI: https://doi.org/10.21538/0134-4889-2019-25-3-141-152
(Mi timm1654)
 

Extremal Shift in a Problem of Tracking a Solution of an Operator Differential Equation

V. I. Maksimovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: A control problem for an operator differential equation in a Hilbert space is considered. The problem consists in constructing an algorithm generating a feedback control and guaranteeing that the solution of the equation follows a solution of another equation, which is subject to an unknown disturbance. We assume that both equations are given on an infinite time interval and the unknown disturbance is an element of the space of square integrable functions; i.e., the perturbation may be unbounded. We construct two algorithms based on elements of the theory of ill-posed problems and the extremal shift method known in the theory of positional differential games. The algorithms are stable with respect to information noises and calculation errors. The first and second algorithms can be used in the cases of continuous and discrete measurement of solutions, respectively.
Keywords: control, tracking problem, distributed equations.
Received: 02.04.2019
Revised: 28.06.2019
Accepted: 08.07.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 308, Issue 1, Pages S152–S162
DOI: https://doi.org/10.1134/S0081543820020121
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 93C20, 35K90
Language: Russian
Citation: V. I. Maksimov, “Extremal Shift in a Problem of Tracking a Solution of an Operator Differential Equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 3, 2019, 141–152; Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S152–S162
Citation in format AMSBIB
\Bibitem{Mak19}
\by V.~I.~Maksimov
\paper Extremal Shift in a Problem of Tracking a Solution of an Operator Differential Equation
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 3
\pages 141--152
\mathnet{http://mi.mathnet.ru/timm1654}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-3-141-152}
\elib{https://elibrary.ru/item.asp?id=39323544}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 308
\issue , suppl. 1
\pages S152--S162
\crossref{https://doi.org/10.1134/S0081543820020121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485178300012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078531436}
Linking options:
  • https://www.mathnet.ru/eng/timm1654
  • https://www.mathnet.ru/eng/timm/v25/i3/p141
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024