Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 3, Pages 100–107
DOI: https://doi.org/10.21538/0134-4889-2019-25-3-100-107
(Mi timm1650)
 

Minimal submanifolds of spheres and cones

M. I. Zelikin, Yu. S. Osipov

Lomonosov Moscow State University
References:
Abstract: Intersections of cones of index zero with spheres are investigated. Fields of the corresponding minimal manifolds are found. In particular, we consider the cone $\mathbb{K} =\{x_0^2+x_1^2=x_2^2+x_3^2\}$. Its intersection with the sphere $\mathbb{S}^3=\sum_{i=0}^3x_i^2$ is often called the Clifford torus $\mathbb{T}$, because Clifford was the first to notice that the metric of this torus as a submanifold of $\mathbb{S}^3$ with the metric induced from $\mathbb{S}^3$ is Euclidian. In addition, the torus $\mathbb{T}$ considered as a submanifold of $\mathbb{S}^3$ is a minimal surface. Similarly, it is possible to consider the cone $\mathcal{K} =\{\sum_{i=0}^3x_i^2=\sum_{i=4}^7x_i^2\}$, often called the Simons cone because he proved that $\mathcal{K}$ specifies a single-valued nonsmooth globally defined minimal surface in $\mathbb{R}^8$ which is not a plane. It appears that the intersection of $\mathcal{K}$ with the sphere $\mathbb{S}^7$, like the Clifford torus, is a minimal submanifold of $\mathbb{S}^7$. These facts are proved by using the technique of quaternions and the Cayley algebra.
Keywords: minimal surface, gaussian curvature, quaternions, octonions (Cayley numbers), field of extremals, Weierstrass function.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00805
This work was supported by the Russian Foundation for Basic Research (project no. 17-01-00805).
Received: 11.02.2019
Revised: 11.03.2019
Accepted: 18.03.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 307, Issue 1, Pages S172–S178
DOI: https://doi.org/10.1134/S0081543819070149
Bibliographic databases:
Document Type: Article
UDC: 523.46/.481
MSC: 49Q05, 11R52
Language: Russian
Citation: M. I. Zelikin, Yu. S. Osipov, “Minimal submanifolds of spheres and cones”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 3, 2019, 100–107; Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S172–S178
Citation in format AMSBIB
\Bibitem{ZelOsi19}
\by M.~I.~Zelikin, Yu.~S.~Osipov
\paper Minimal submanifolds of spheres and cones
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 3
\pages 100--107
\mathnet{http://mi.mathnet.ru/timm1650}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-3-100-107}
\elib{https://elibrary.ru/item.asp?id=39323540}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 307
\issue , suppl. 1
\pages S172--S178
\crossref{https://doi.org/10.1134/S0081543819070149}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485178300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078397451}
Linking options:
  • https://www.mathnet.ru/eng/timm1650
  • https://www.mathnet.ru/eng/timm/v25/i3/p100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:223
    Full-text PDF :84
    References:28
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024