Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 2, Pages 258–272
DOI: https://doi.org/10.21538/0134-4889-2019-25-2-258-272
(Mi timm1640)
 

This article is cited in 13 scientific papers (total in 13 papers)

Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems

M. Sh. Shabozovab, M. S. Saidusajnovab

a Tajik National University, Dushanbe
b University of Central Asia
References:
Abstract: Assume that $\mathcal{A}(U)$ is the set of functions analytic in the disk $U:=\{z: |z|<1\}$, $L_2^{(r)}:=L_2^{(r)}(U)$ for $r\in\mathbb{N}$ is the class of functions $f\in\mathcal{A}(U)$ such that $f^{(r)}\in L_2^{(r)}$, and $W^{(r)}L_2$ is the class of functions $f\in L_2^{(r)}$ satisfying the constraint $\|f^{(r)}\|\leq 1$. We find exact values for mean-square approximations of functions $f\in W^{(r)}L_2$ and their successive derivatives $f^{(s)}$ ($1\leq s\leq r-1$, $r\geq 2$) in the metric of the space $L_2$. A similar problem is solved for the class $W_2^{(r)}(\mathscr{K}_{m},\Psi)$ ($r\in\mathbb{Z}_{+}$, $m\in\mathbb{N}$) of functions $f\in L_2^{(r)}$ such that the $\mathscr{K}$-functional of their $r$th derivative satisfies the condition
\begin{equation*} \mathscr{K}_{m}\left(f^{(r)},t^{m}\right)\leq\Psi(t^{m}), \ \ 0<t<1, \end{equation*}
where $\Psi$ is some increasing majorant and $\Psi(0)=0$.
Keywords: generalized modulus of continuity, generalized translation operator, orthonormal system, Jackson–Stechkin inequality, $\mathscr{K}$-functional.
Received: 28.02.2019
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 42C10, 47A58
Language: Russian
Citation: M. Sh. Shabozov, M. S. Saidusajnov, “Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 258–272
Citation in format AMSBIB
\Bibitem{ShaSai19}
\by M.~Sh.~Shabozov, M.~S.~Saidusajnov
\paper Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 2
\pages 258--272
\mathnet{http://mi.mathnet.ru/timm1640}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-2-258-272}
\elib{https://elibrary.ru/item.asp?id=38071620}
Linking options:
  • https://www.mathnet.ru/eng/timm1640
  • https://www.mathnet.ru/eng/timm/v25/i2/p258
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :60
    References:36
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024