Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 2, Pages 167–176
DOI: https://doi.org/10.21538/0134-4889-2019-25-2-167-176
(Mi timm1633)
 

Approximation of Functions by $n$-Separate Wavelets in the Spaces ${L}^p(\mathbb{R})$, $1\leq p\leq\infty$

E. A. Pleshchevaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: We consider the orthonormal bases of $n$-separate MRAs and wavelets constructed by the author earlier. The classical wavelet basis of the space $L^2(\mathbb{R})$ is formed by shifts and compressions of a single function $\psi$. In contrast to the classical case, we consider a basis of $L^2(\mathbb{R})$ formed by shifts and compressions of $n$ functions $\psi^s$, $s=1,\ldots,n$. The constructed $n$-separate wavelets form an orthonormal basis of $L^2(\mathbb{R})$. In this case, the series $\sum_{s=1}^{n}\sum_{j\in\mathbb{Z}}\sum_{k\in\mathbb{Z}}\langle f,\psi^s_{nj+s} \rangle \psi^s_{nj+s}$ converges to the function $f$ in the space $L^2(\mathbb{R})$. We write additional constraints on the functions $\varphi^s$ and $\psi^s$, $s=1,\ldots,n$, that provide the convergence of the series to the function $f$ in the spaces $L^p(\mathbb{R})$, $1 \leq p \leq \infty$, in the norm and almost everywhere.
Keywords: wavelet, scaling function, basis, multiresolution analysis.
Received: 19.03.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 308, Issue 1, Pages S178–S187
DOI: https://doi.org/10.1134/S0081543820020145
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 42C40
Language: Russian
Citation: E. A. Pleshcheva, “Approximation of Functions by $n$-Separate Wavelets in the Spaces ${L}^p(\mathbb{R})$, $1\leq p\leq\infty$”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 167–176; Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S178–S187
Citation in format AMSBIB
\Bibitem{Ple19}
\by E.~A.~Pleshcheva
\paper Approximation of Functions by $n$-Separate Wavelets in the Spaces ${L}^p(\mathbb{R})$, $1\leq p\leq\infty$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 2
\pages 167--176
\mathnet{http://mi.mathnet.ru/timm1633}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-2-167-176}
\elib{https://elibrary.ru/item.asp?id=38071612}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 308
\issue , suppl. 1
\pages S178--S187
\crossref{https://doi.org/10.1134/S0081543820020145}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485177500015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078418742}
Linking options:
  • https://www.mathnet.ru/eng/timm1633
  • https://www.mathnet.ru/eng/timm/v25/i2/p167
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:120
    Full-text PDF :36
    References:26
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024