Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 2, Pages 149–159
DOI: https://doi.org/10.21538/0134-4889-2019-25-2-149-159
(Mi timm1631)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the coincidence of reproducing kernel Hilbert spaces connected by a special transformation

V. V. Napalkova, V. V. Napalkov

a Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa
Full-text PDF (203 kB) Citations (2)
References:
Abstract: We consider two reproducing kernel Hilbert spaces $H_1$ and $H_2$ consisting of complex-valued functions given on some sets $\Omega_1\subset {\mathbb C}^n$ and $\Omega_2\subset {\mathbb C}^m$, respectively. The norms in $H_1$ and $H_2$ have integral form:
$$ \| f\|_{H_1}^2=\int_ {\Omega_1}|f (z)|^2\, d\mu(z), \ \ f\in H_1;\ \ \ \ \ \| q\|_{H_2}^2=\int_{\Omega_2}|q(t)|^2\,d\nu(t), \ \ q\in H_2. $$
Let $\{E(\cdot,z)\}_{z\in \Omega_2}$ be some complete system of functions in the space $H_1$. Define
\begin{align*} \widetilde f(z)\stackrel{\rm def}{=}(E(\cdot, z), f)_{H_1}\ \forall z\in \Omega_2,\ \ \widetilde H_1=\{\widetilde f,\, f\in H_1\}, (\widetilde f_1,\widetilde f_2)_{\widetilde H_1}\stackrel{\rm def}{=}(f_2,f_1)_{H_1}, \|\widetilde f_1\|_{\widetilde H_1}=\|f_1\|_{H_1}\ \ \forall \widetilde f_1,\widetilde f_2\in \widetilde H_1. \end{align*}
We study the question of coincidence of the spaces $\widetilde H_1$ and $H_2$, i.e., the conditions under which these spaces consist of the same functions and have equal norms. The following criterion of coincidence is obtained: $\widetilde H_1=H_2$ if and only if there exists a linear continuous one-to-one unitary operator ${\mathcal A}$ from $\overline H_1$ onto $H_2$ that for any $\xi\in \Omega_1$ takes the function $K_{\overline H_1}(\cdot,\xi)$ to the function $E(\xi,\cdot)$. Here $\overline H_1$ is the space consisting of the complex conjugates of functions from $H_1$ and $K_{\overline H_1}(t,\xi)$, $t,\xi\in \Omega_1$, is the reproducing kernel of the space $\overline H_1$. We also obtain some equivalent statements and a criterion for the coincidence of $H_1$ and $H_2$.
Keywords: Bargmann–Fock space, operator of multiplication by a function, expansion systems similar to orthogonal systems, reproducing kernel Hilbert space.
Funding agency Grant number
Russian Foundation for Basic Research 17-41-020070
This work was supported by the Russian Foundation for Basic Research (project no. 17-41-020070).
Received: 31.01.2019
Bibliographic databases:
Document Type: Article
UDC: 517.444
Language: Russian
Citation: V. V. Napalkov, V. V. Napalkov, “On the coincidence of reproducing kernel Hilbert spaces connected by a special transformation”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 149–159
Citation in format AMSBIB
\Bibitem{NapNap19}
\by V.~V.~Napalkov, V.~V.~Napalkov
\paper On the coincidence of reproducing kernel Hilbert spaces connected by a special transformation
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 2
\pages 149--159
\mathnet{http://mi.mathnet.ru/timm1631}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-2-149-159}
\elib{https://elibrary.ru/item.asp?id=38071610}
Linking options:
  • https://www.mathnet.ru/eng/timm1631
  • https://www.mathnet.ru/eng/timm/v25/i2/p149
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:324
    Full-text PDF :71
    References:63
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024