Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 2, Pages 88–101
DOI: https://doi.org/10.21538/0134-4889-2019-25-2-88-101
(Mi timm1626)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters

A. R. Danilinab, O. O. Kovrizhnykhab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (251 kB) Citations (2)
References:
Abstract: The paper continues the authors' previous studies. We consider a time-optimal control problem for a singularly perturbed linear autonomous system with two independent small parameters and smooth geometric constraints on the control in the form of a ball
$$ \left\{
\begin{array}{llll} \phantom{\varepsilon^3}\dot{x}=y,\,& x,\,y\in \mathbb{R}^{2},\quad u\in \mathbb{R}^{2},\\[1ex] \varepsilon^3\dot{y}=Jy+u,&\,\|u\|\le 1,\quad 0<\varepsilon,\mu\ll 1,\\[1ex] x(0)=x_0(\varepsilon,\mu)=(x_{0,1}, \varepsilon^3\mu\xi)^*,\quad y(0)=y_0,\\[1ex] x(T_{(\varepsilon,\mu})=0,\quad y(T_{(\varepsilon,\mu})=0,\quad T_{(\varepsilon,\mu} \to \min,& \end{array}
\right. $$
where \vspace{-1mm}
$$ J=\left(
\begin{array}{rr} 0&1 \\ 0&0\end{array}
\right). $$
The main difference of this case from the systems with fast and slow variables studied earlier is that here the matrix $J$ at the fast variables is the second-order Jordan block with zero eigenvalue and, thus, does not satisfy the standard asymptotic stability condition. Continuing the research, we consider initial conditions depending on the second small parameter $\mu$. We derive and justify a complete asymptotic expansion in the sense of Erdelyi of the optimal time and optimal control with respect to the asymptotic sequence $\varepsilon^\gamma(\varepsilon^k+\mu^k)$, $0<\gamma<1$.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problem, small parameter.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.А03.21.0006
The second author was supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 10.01.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 309, Issue 1, Pages S10–S23
DOI: https://doi.org/10.1134/S0081543820040033
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 93C70, 49N05
Language: Russian
Citation: A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 88–101; Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S10–S23
Citation in format AMSBIB
\Bibitem{DanKov19}
\by A.~R.~Danilin, O.~O.~Kovrizhnykh
\paper Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 2
\pages 88--101
\mathnet{http://mi.mathnet.ru/timm1626}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-2-88-101}
\elib{https://elibrary.ru/item.asp?id=38071603}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 309
\issue , suppl. 1
\pages S10--S23
\crossref{https://doi.org/10.1134/S0081543820040033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485177500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078480119}
Linking options:
  • https://www.mathnet.ru/eng/timm1626
  • https://www.mathnet.ru/eng/timm/v25/i2/p88
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:218
    Full-text PDF :47
    References:34
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024