Abstract:
The paper continues the authors' previous studies. We consider a time-optimal control problem for a singularly perturbed linear autonomous system with two independent small parameters and smooth geometric constraints on the control in the form of a ball
{ε3˙x=y,x,y∈R2,u∈R2,ε3˙y=Jy+u,‖u‖⩽1,0<ε,μ≪1,x(0)=x0(ε,μ)=(x0,1,ε3μξ)∗,y(0)=y0,x(T(ε,μ)=0,y(T(ε,μ)=0,T(ε,μ→min,
where \vspace{-1mm} J=(0100).
The main difference of this case from the systems with fast and slow variables studied earlier is that here the matrix J at the fast variables is the second-order Jordan block with zero eigenvalue and, thus, does not satisfy the standard asymptotic stability condition. Continuing the research, we consider initial conditions depending on the second small parameter μ. We derive and justify a complete asymptotic expansion in the sense of Erdelyi of the optimal time and optimal control with respect to the asymptotic sequence εγ(εk+μk), 0<γ<1.
Keywords:
optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problem, small parameter.
The second author was supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Citation:
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 88–101; Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S10–S23
\Bibitem{DanKov19}
\by A.~R.~Danilin, O.~O.~Kovrizhnykh
\paper Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 2
\pages 88--101
\mathnet{http://mi.mathnet.ru/timm1626}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-2-88-101}
\elib{https://elibrary.ru/item.asp?id=38071603}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 309
\issue , suppl. 1
\pages S10--S23
\crossref{https://doi.org/10.1134/S0081543820040033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485177500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078480119}
Linking options:
https://www.mathnet.ru/eng/timm1626
https://www.mathnet.ru/eng/timm/v25/i2/p88
This publication is cited in the following 2 articles:
A. R. Danilin, A. A. Shaburov, “Asymptotics of a Solution to an Optimal Control Problem with Integral Convex Performance Index, Cheap Control, and Initial Data Perturbations”, Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S69–S77
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of a Solution to an Optimal Control Problem with a Terminal Convex Performance Index and a Perturbation of the Initial Data”, Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S85–S97