Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 2, Pages 48–66
DOI: https://doi.org/10.21538/0134-4889-2019-25-2-48-66
(Mi timm1623)
 

This article is cited in 1 scientific paper (total in 1 paper)

Kolmogorov widths of Sobolev classes on a closed interval with constraints on the variation

A. A. Vasil'eva

Lomonosov Moscow State University
Full-text PDF (289 kB) Citations (1)
References:
Abstract: We study the problem of estimating Kolmogorov widths in $L_q[0,\,1]$ for the Lipschitz classes of functions with fixed values at several points: $\tilde M=\{f\in AC[0,\,1],\; \|\dot{f}\|_\infty \le 1, \; f(j/s)=y_j, \; 0\le j\le s\}$. Applying well-known results about the widths of Sobolev classes, it is easy to obtain order estimates up to constants depending on $q$ and $y_1, \, \dots, \, y_n$. Here we obtain order estimates up to constants depending only on $q$. To this end, we estimate the widths of the intersection of two finite-dimensional sets: a cube and a weighted Cartesian product of octahedra. If we take the unit ball of $l_p^n$ instead of the cube, we get a discretization of the problem on estimating the widths of the intersection of the Sobolev class and the class of functions with constraints on their variation: $M=\{ f\in AC[0,\,1]:\;\|\dot{f}\|_{L_p[0, \, 1]}\le 1,\; \|\dot{f}\|_{L_1\left[ (j-1)/s, \, j/s\right]} \le \varepsilon_j/s, \; 1\le j \le s\}$. For sufficiently large $n$, order estimates are obtained for the widths of these classes up to constants depending only on $p$ and $q$. If $p>q$ or $p>2$, then these estimates have the form $\varphi(\varepsilon_1, \, \dots, \, \varepsilon_s)n^{-1}$, where $\varphi(\varepsilon_1, \, \dots, \, \varepsilon_s) \to 0$ as $(\varepsilon_1, \, \dots, \, \varepsilon_s) \to 0$ (explicit formulas for $\varphi$ are given in the paper). If $p\le q$ and $p\le 2$, then the estimates have the form $n^{-1}$ (hence, the constraints on the variation do not improve the estimate for the widths). The upper estimates are proved with the use of Galeev's result on the intersection of finite-dimensional balls, whereas the proof of the lower estimates is based on a generalization of Gluskin's result on the width of the intersection of a cube and an octahedron.
Keywords: Kolmogorov widths, Sobolev classes, interpolation classes.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00332
This work was supported by the Russian Foundation for Basic Research (project no. 19-01-00332).
Received: 15.03.2019
Bibliographic databases:
Document Type: Article
UDC: 517.518.224
MSC: 41A46
Language: Russian
Citation: A. A. Vasil'eva, “Kolmogorov widths of Sobolev classes on a closed interval with constraints on the variation”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 48–66
Citation in format AMSBIB
\Bibitem{Vas19}
\by A.~A.~Vasil'eva
\paper Kolmogorov widths of Sobolev classes on a closed interval with constraints on the variation
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 2
\pages 48--66
\mathnet{http://mi.mathnet.ru/timm1623}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-2-48-66}
\elib{https://elibrary.ru/item.asp?id=38071599}
Linking options:
  • https://www.mathnet.ru/eng/timm1623
  • https://www.mathnet.ru/eng/timm/v25/i2/p48
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025