Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 1, Pages 219–228
DOI: https://doi.org/10.21538/0134-4889-2019-25-1-219-228
(Mi timm1612)
 

This article is cited in 5 scientific papers (total in 5 papers)

A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping

S. N. Smirnov

Lomonosov Moscow State University
Full-text PDF (232 kB) Citations (5)
References:
Abstract: Assume that $X$ is a topological space and $Y$ is a separable metric space. Let these spaces be equipped with Borel $\sigma$-algebras $\mathcal{B}_X$ and $\mathcal{B}_Y$, respectively. Suppose that $P(x,B)$ is a stochastic transition kernel; i.e., the mapping $x \mapsto P(x,B)$ is measurable for all $B \in \mathcal{B}_Y$ and the mapping $B\mapsto P(x, B)$ is a probability measure for any $x \in X$. Denote by $\mathrm{supp}(P(x,\cdot))$ the topological support of the measure $B\mapsto P(x, B)$. If the transition kernel $P(x,B)$ satisfies the Feller property, i.e., the mapping $x \mapsto P(x,\cdot)$ is continuous in the weak topology on the space of probability measures, then the set-valued mapping $x\mapsto\mathrm{supp}(P(x,\cdot))$ is lower semicontinuous. Conversely, consider a set-valued mapping $x\mapsto S(x)$, where $x\in X$ and $S(x)$ is a nonempty closed subset of a Polish space $Y$. If $x \mapsto S(x)$ is lower semicontinuous, then, under some general assumptions on the space $X$, there exists a Feller transition kernel such that $\mathrm{supp}(P(x,\cdot))=S(x)$ for all $x\in X$.
Keywords: Feller property, transition kernel, topological support of a measure, lower semicontinuous set-valued mapping, continuous branch (selection).
Funding agency Grant number
Lomonosov Moscow State University АААА-А16-116021110324-8
This study was carried out at the Faculty of Computational Mathematics and Cybernetics of Moscow State University within the project "Optimization Methods in Control Problems for Complex Systems under Available Information" (state registration no. AAAA-A16-116021110324-8).
Received: 13.07.2018
Revised: 16.11.2018
Accepted: 19.11.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 308, Issue 1, Pages S188–S195
DOI: https://doi.org/10.1134/S0081543820020157
Bibliographic databases:
Document Type: Article
UDC: 519.216, 519.866.2
MSC: 60J35, 91B25
Language: Russian
Citation: S. N. Smirnov, “A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 1, 2019, 219–228; Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S188–S195
Citation in format AMSBIB
\Bibitem{Smi19}
\by S.~N.~Smirnov
\paper A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 1
\pages 219--228
\mathnet{http://mi.mathnet.ru/timm1612}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-1-219-228}
\elib{https://elibrary.ru/item.asp?id=37051106}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 308
\issue , suppl. 1
\pages S188--S195
\crossref{https://doi.org/10.1134/S0081543820020157}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470956900017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078232695}
Linking options:
  • https://www.mathnet.ru/eng/timm1612
  • https://www.mathnet.ru/eng/timm/v25/i1/p219
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024