Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2006, Volume 12, Number 2, Pages 152–161 (Mi timm160)  

This article is cited in 1 scientific paper (total in 1 paper)

Estimate of solution stability in a two-dimensional inverse problem for elasticity equations

V. G. Romanov
Full-text PDF (293 kB) Citations (1)
References:
Abstract: The problem of determining the density of the medium and one of its elasticity moduli is considered. Properties of the elastic medium and external forces are assumed to be independent of the coordinate $x_3$. In this case, the third component of the displacement vector satisfies a scalar equation of the second order, which contains the density $\rho$ of the medium and elasticity modulus $\mu$ as coefficients. The parameters $\rho$ and $\mu$ are known to be positive and constant everywhere outside some compact domain $D\subset\mathbb R^2$, but they are unknown inside $D$. The problem of determining these coefficients in $D$ via information, given on the boundary of the domain $D$ for some finite time interval, about a solution of two direct problems is considered. An estimate of the conditional stability of a solution of the inverse problem under consideration is established.
Received: 15.03.2006
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2006, Volume 255, Issue 2, Pages S150–S160
DOI: https://doi.org/10.1134/S0081543806060137
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: V. G. Romanov, “Estimate of solution stability in a two-dimensional inverse problem for elasticity equations”, Control, stability, and inverse problems of dynamics, Trudy Inst. Mat. i Mekh. UrO RAN, 12, no. 2, 2006, 152–161; Proc. Steklov Inst. Math. (Suppl.), 255, suppl. 2 (2006), S150–S160
Citation in format AMSBIB
\Bibitem{Rom06}
\by V.~G.~Romanov
\paper Estimate of solution stability in a~two-dimensional inverse problem for elasticity equations
\inbook Control, stability, and inverse problems of dynamics
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2006
\vol 12
\issue 2
\pages 152--161
\mathnet{http://mi.mathnet.ru/timm160}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338254}
\zmath{https://zbmath.org/?q=an:1126.35106}
\elib{https://elibrary.ru/item.asp?id=12040745}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2006
\vol 255
\issue , suppl. 2
\pages S150--S160
\crossref{https://doi.org/10.1134/S0081543806060137}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846953596}
Linking options:
  • https://www.mathnet.ru/eng/timm160
  • https://www.mathnet.ru/eng/timm/v12/i2/p152
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:383
    Full-text PDF :118
    References:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024