Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 4, Pages 246–269
DOI: https://doi.org/10.21538/0134-4889-2018-24-4-246-269
(Mi timm1591)
 

This article is cited in 7 scientific papers (total in 7 papers)

Relaxation of the Pursuit–Evasion Differential Game and Iterative Methods

A. G. Chentsovab, D. M. Khachaiab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (322 kB) Citations (7)
References:
Abstract: A variant of the program iteration method called stability iterations is used for a differential game of pursuit–evasion. The successful solvability set of one of the problems generating the game is found as a limit of the iterative procedure in the space of sets whose elements are positions of the game. The game is defined by a pair of closed sets, one of the which is the target set in the pursuit problem (the first player's problem) and the other specifies the state constraints in this problem. For the positions not belonging to the solvability set of the pursuit problem, it is interesting to determine the smallest “size” of a neighborhood of the two mentioned sets for which the first player can implement the guidance to the neighborhood of the target set corresponding to this “size” within the similar neighborhood of the second set, i.e., the set specifying the state constraints. Similar constructions are considered for the sets realized at each stage of the iterative procedure. We use the connection of these constructions with the mentioned smallest “size” of neighborhoods of the sets that are parameters of the differential game in the sense of guaranteed realizability of guidance under the replacement of the original sets by these neighborhoods.
Keywords: differential game of pursuit–evasion, program iteration method, guaranteed guidance.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00505
This work was supported by the Russian Foundation for Basic Research (project no. 16-01-00505).
Received: 24.09.2018
Revised: 08.11.2018
Accepted: 12.11.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 308, Issue 1, Pages S35–S57
DOI: https://doi.org/10.1134/S0081543820020042
Bibliographic databases:
Document Type: Article
UDC: 519.83
Language: Russian
Citation: A. G. Chentsov, D. M. Khachai, “Relaxation of the Pursuit–Evasion Differential Game and Iterative Methods”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2018, 246–269; Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S35–S57
Citation in format AMSBIB
\Bibitem{CheKha18}
\by A.~G.~Chentsov, D.~M.~Khachai
\paper Relaxation of the Pursuit--Evasion Differential Game and Iterative Methods
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 4
\pages 246--269
\mathnet{http://mi.mathnet.ru/timm1591}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-4-246-269}
\elib{https://elibrary.ru/item.asp?id=36517715}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 308
\issue , suppl. 1
\pages S35--S57
\crossref{https://doi.org/10.1134/S0081543820020042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464575200020}
Linking options:
  • https://www.mathnet.ru/eng/timm1591
  • https://www.mathnet.ru/eng/timm/v24/i4/p246
  • This publication is cited in the following 7 articles:
    1. A. G. Chentsov, “Guidance–Evasion Differential Game: Alternative Solvability and Relaxations of the Guidance Problem”, Proc. Steklov Inst. Math., 315 (2021), 270–289  mathnet  crossref  crossref  isi
    2. A. G. Chentsov, “Differential approach-evasion game: alternative solvability and the construction of relaxations”, Differ. Equ., 57:8 (2021), 1088–1114  crossref  mathscinet  isi  scopus
    3. A. G. Chentsov, D. M. Khachai, “Operator programmnogo pogloscheniya i relaksatsiya differentsialnoi igry sblizheniya–ukloneniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:1 (2020), 64–91  mathnet  crossref
    4. A. G. Chentsov, “Nekotorye voprosy teorii differentsialnykh igr s fazovymi ogranicheniyami”, Izv. IMI UdGU, 56 (2020), 138–184  mathnet  crossref
    5. A. G. Chentsov, D. M. Khachay, “Relaxation of a dynamic game of guidance and program constructions of control”, Minimax Theory Appl., 5:2, SI (2020), 275–304  mathscinet  zmath  isi
    6. A. Chentsov, D. Khachay, “Towards a relaxation of the pursuit-evasion differential game”, IFAC PAPERSONLINE, 52:13 (2019), 2303–2307  crossref  isi  scopus
    7. Alexander Chentsov, Daniel Khachay, Studies in Systems, Decision and Control, 203, Advanced Control Techniques in Complex Engineering Systems: Theory and Applications, 2019, 129  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:279
    Full-text PDF :61
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025