Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 4, Pages 225–234
DOI: https://doi.org/10.21538/0134-4889-2018-24-4-225-234
(Mi timm1589)
 

Harmonic Interpolating Wavelets in a Ring

Yu. N. Subbotina, N. I. Chernykhab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: Complementing the authors' earlier joint papers on the application of orthogonal wavelets to represent solutions of Dirichlet problems with the Laplace operator and its powers in a disk and a ring and of interpolating wavelets for the same problem in a disk, we develop a technique of applying periodic interpolating wavelets in a ring for the Dirichlet boundary value problem. The emphasis is not on the exact representation of the solution in the form of (double) series in a wavelet system but on the approximation of solutions with any given accuracy by finite linear combinations of dyadic rational translations of special harmonic polynomials; these combinations are constructed with the use of interpolating wavelets. The obtained approximation formulas are simply calculated, especially if the squared Fourier transform of the Meyer scaling function with the properties described in the paper is explicitly defined in terms of the corresponding elementary functions.
Keywords: interpolating wavelets, multiresolution analysis (MRA), Dirichlet problem, Laplace operator, best approximation, modulus of continuity.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
This work was supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 05.09.2018
Revised: 21.11.2018
Accepted: 26.11.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 308, Issue 1, Pages S58–S67
DOI: https://doi.org/10.1134/S0081543820020054
Bibliographic databases:
Document Type: Article
UDC: 517.518.832
Language: Russian
Citation: Yu. N. Subbotin, N. I. Chernykh, “Harmonic Interpolating Wavelets in a Ring”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2018, 225–234; Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S58–S67
Citation in format AMSBIB
\Bibitem{SubChe18}
\by Yu.~N.~Subbotin, N.~I.~Chernykh
\paper Harmonic Interpolating Wavelets in a Ring
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 4
\pages 225--234
\mathnet{http://mi.mathnet.ru/timm1589}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-4-225-234}
\elib{https://elibrary.ru/item.asp?id=36517713}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 308
\issue , suppl. 1
\pages S58--S67
\crossref{https://doi.org/10.1134/S0081543820020054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464575200018}
Linking options:
  • https://www.mathnet.ru/eng/timm1589
  • https://www.mathnet.ru/eng/timm/v24/i4/p225
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :86
    References:32
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024