Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 4, Pages 208–216
DOI: https://doi.org/10.21538/0134-4889-2018-24-4-208-216
(Mi timm1587)
 

Interior Point Methods Adapted to Improper Linear Programs

L. D. Popovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: For linear programs, we consider schemes for the formation of a generalized central path, which arise under the simultaneous use of interior and exterior penalty terms in the traditional Lagrange function and the minimax problems generated by it. The advantage of the new schemes is that they do not require a priori knowledge of feasible interior points in the primal or dual problem. Moreover, when applied to problems with inconsistent constraints, the schemes automatically lead to some of their generalized solutions, which have an important applied content. Descriptions of the algorithms, their justification, and results of numerical experiments are presented.
Keywords: linear programming, duality, penalty function methods, regularization methods, improper problems, central path.
Funding agency Grant number
Russian Foundation for Basic Research 16-07-00266
This work was supported by the Russian Foundation for Basic Research (project no. 16-07-00266).
Received: 24.08.2018
Revised: 08.11.2018
Accepted: 12.11.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 309, Issue 1, Pages S116–S124
DOI: https://doi.org/10.1134/S0081543820040148
Bibliographic databases:
Document Type: Article
UDC: 519.658.4
MSC: 90C05, 90C46
Language: Russian
Citation: L. D. Popov, “Interior Point Methods Adapted to Improper Linear Programs”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2018, 208–216; Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S116–S124
Citation in format AMSBIB
\Bibitem{Pop18}
\by L.~D.~Popov
\paper Interior Point Methods Adapted to Improper Linear Programs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 4
\pages 208--216
\mathnet{http://mi.mathnet.ru/timm1587}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-4-208-216}
\elib{https://elibrary.ru/item.asp?id=36517711}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 309
\issue , suppl. 1
\pages S116--S124
\crossref{https://doi.org/10.1134/S0081543820040148}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464575200016}
Linking options:
  • https://www.mathnet.ru/eng/timm1587
  • https://www.mathnet.ru/eng/timm/v24/i4/p208
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024