Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 3, Pages 164–175
DOI: https://doi.org/10.21538/0134-4889-2018-24-3-164-175
(Mi timm1560)
 

This article is cited in 1 scientific paper (total in 1 paper)

Coconvex interpolation by splines with three-point rational interpolants

A.-R. K. Ramazanovab, V. G. Magomedovaa

a Daghestan State University, Makhachkala
b Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
Full-text PDF (221 kB) Citations (1)
References:
Abstract: For discrete functions $f(x)$ defined on arbitrary grid nodes $\Delta: a=x_0 < x_1 < \dots < x_N=b$ $(N\geqslant 3)$, we study the issues of preserving the (upward or downward) convexity and coconvexity with a change of convexity direction by rational spline-functions $R_{N,1}(x)=R_{N,1}(x,f,\Delta,g(t))=(R_i(x)(x-x_{i-1})+R_{i-1}(x)(x_i-x))/(x_i-x_{i-1})$, where $x\in [x_{i-1},x_i]$ $(i=1,2,\dots,N)$, $R_i(x)=\alpha_i+\beta_i(x-x_i)+\gamma_i/(x-g_i(t))$ $(i=1,2,\dots,N-1)$, and $R_i(x_j)=f(x_j)$ $(j=i-1,i,i+1)$. The location of the pole $g_i(t)$ with respect to the nodes $x_{i-1}$ and $x_i$ is defined by the parameter $t$. We assume that $R_0(x)\equiv R_1(x)$ and $R_N(x)\equiv R_{N-1}(x)$. For these spines we derive the conditions $1/2 < |q_i| < 2$ of convexity preservation, where $q_i=f(x_{i-2},x_{i-1},x_i)/f(x_{i-1},x_i,x_{i+1})$ for $i=2,3,\dots,N-1$.
Keywords: interpolation spline, rational spline, coconvex interpolation, shape-preserving interpolation.
Received: 06.02.2018
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 97N50
Language: Russian
Citation: A.-R. K. Ramazanov, V. G. Magomedova, “Coconvex interpolation by splines with three-point rational interpolants”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 164–175
Citation in format AMSBIB
\Bibitem{RamMag18}
\by A.-R.~K.~Ramazanov, V.~G.~Magomedova
\paper Coconvex interpolation by splines with three-point rational interpolants
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 3
\pages 164--175
\mathnet{http://mi.mathnet.ru/timm1560}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-3-164-175}
\elib{https://elibrary.ru/item.asp?id=35511285}
Linking options:
  • https://www.mathnet.ru/eng/timm1560
  • https://www.mathnet.ru/eng/timm/v24/i3/p164
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :40
    References:38
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024