Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 3, Pages 109–132
DOI: https://doi.org/10.21538/0134-4889-2018-24-3-109-132
(Mi timm1556)
 

This article is cited in 1 scientific paper (total in 1 paper)

Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. IV

A. S. Kondrat'evab, V. I. Trofimovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (401 kB) Citations (1)
References:
Abstract: This is the fourth in a series of papers whose results imply the validity of a strengthened version of the Sims conjecture on finite primitive permutation groups. In this paper, the case of primitive groups with simple socle of orthogonal Lie type and nonparabolic point stabilizer is considered. Let $G$ be a finite group, and let $M_1$ and $M_2$ be distinct conjugate maximal subgroups of $G$. For any $i\in \mathbb N$, we define inductively subgroups $(M_1,M_2) ^{i}$ and $(M_2,M_1)^{i}$ of $M_1\cap M_2$, which will be called the $i$th mutual cores of $M_1$ with respect to $M_2$ and of $M_2$ with respect to $M_1$, respectively. Put $(M_1,M_2)^{1}=(M_1\cap M_2)_{M_1}$ and $(M_2,M_1)^{1}=(M_1\cap M_2)_{M_2}$. For $i\in \mathbb ~N$, assuming that $(M_1,M_2)^{i}$ and $(M_2,M_1)^{i}$ are already defined, put $(M_1,M_2)^{i+1} = ((M_1,M_2)^{i}\cap (M_2,M_1)^{i})_{M_1}$ and $(M_2,M_1)^{i+1} = ((M_1,M_2)^{i}\cap (M_2,M_1)^{i})_{M_2}$. We are interested in the case when $(M_1)_G=(M_2)_G=1$ and $1<|(M_1,M_2)^{2}| \leq |(M_2,M_1)^{2}|$. The set of all such triples $(G, M_1, M_2)$ is denoted by $\Pi$. We consider triples from $\Pi$ up to the following equivalence: triples $(G,M_1,M_2)$ and $(G',M'_1,M'_2)$ from $\Pi$ are equivalent if there exists an isomorphism from $G$ to $G'$ mapping $M_1$ to $M'_1$ and $M_2$ to $M'_2$. In the present paper, the following theorem is proved. Theorem. Suppose that $(G, M_1, M_2)\in\Pi$, $L=Soc(G)$ is a simple orthogonal group of degree $\geq 7$, and $M_1\cap L$ is a nonparabolic subgroup of $L$. Then $Soc(G)\cong P\Omega^+_8(r)$, where $r$ is an odd prime, $(M_1, M_2)^3=(M_2,M_1)^3=1$, and one of the following statements holds$:$ $\mathrm (a)$  $r\equiv\pm1 (\mathrm{mod} 8)$; the group $G$ is isomorphic to $P\Omega^+_8(r):{\mathbb Z}_3$ or $P\Omega^+_8(r):S_3$; $(M_1, M_2)^2=Z(O_2(M_1))$ and $(M_2, M_1)^2=Z(O_2(M_2))$ are elementary abelian groups of order $2^3$; $(M_1, M_2)^1=O_2(M_1)$ and $(M_2, M_1)^1=O_2(M_2)$ are special groups of order $2^9$; the group $M_1/O_2(M_1)$ is isomorphic to $L_3(2)\times {\mathbb Z}_3$ or $L_3(2)\times S_3$, respectively; and $M_1\cap M_2$ is a Sylow $2$-subgroup in $M_1$; $\mathrm (b)$  $r\leq 5$; $G/L$ either contains $Outdiag(L)$ or is isomorphic to ${\mathbb Z}_4$; $(M_1, M_2)^2=Z(O_2(M_1\cap L))$ and $(M_2, M_1)^2=Z(O_2(M_2\cap L))$ are elementary abelian groups of order $2^2$; $(M_1, M_2)^1=(O_2(M_1\cap L))'$ and $(M_2, M_1)^1=(O_2(M_2\cap L))'$ are elementary abelian groups of order $2^5$; $O_2(M_1\cap L)/(O_2(M_1\cap L))'$ is an elementary abelian group of order $2^6$; the group $(M_1\cap L)/O_2(M_1\cap L)$ is isomorphic to the group $S_3$; $|M_1:M_1\cap M_2|=24$; $|M_1\cap M_2\cap L|=2^{11}$; and an element of order $3$ from $M_1\cap M_2$ (if it exists) induces on the group $L$ its graph automorphism. In any of cases $\mathrm (a)$ and $\mathrm (b)$, the triples $(G,M_1,M_2)$ from $\Pi$ exist and form one class up to equivalence.
Keywords: finite primitive permutation group, stabilizer of a point, Sims conjecture, almost simple group, group of orthogonal Lie type.
Funding agency Grant number
Russian Science Foundation 14-11-00061-П
This work was supported by the Russian Science Foundation (project no. 14-11-00061-П).
Received: 25.12.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 307, Issue 1, Pages S64–S87
DOI: https://doi.org/10.1134/S008154381907006X
Bibliographic databases:
Document Type: Article
UDC: 512.542+519.175
MSC: 20B15, 20D06, 05C25
Language: Russian
Citation: A. S. Kondrat'ev, V. I. Trofimov, “Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. IV”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 109–132; Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S64–S87
Citation in format AMSBIB
\Bibitem{KonTro18}
\by A.~S.~Kondrat'ev, V.~I.~Trofimov
\paper Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. IV
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 3
\pages 109--132
\mathnet{http://mi.mathnet.ru/timm1556}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-3-109-132}
\elib{https://elibrary.ru/item.asp?id=35511281}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 307
\issue , suppl. 1
\pages S64--S87
\crossref{https://doi.org/10.1134/S008154381907006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000451634900012}
Linking options:
  • https://www.mathnet.ru/eng/timm1556
  • https://www.mathnet.ru/eng/timm/v24/i3/p109
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024