Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 3, Pages 73–90
DOI: https://doi.org/10.21538/0134-4889-2018-24-3-73-90
(Mi timm1553)
 

This article is cited in 1 scientific paper (total in 1 paper)

On finite simple linear and unitary groups of small size over fields of different characteristics with coinciding prime graphs

M. R. Zinov'evaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (295 kB) Citations (1)
References:
Abstract: Suppose that $G$ is a finite group, $\pi(G)$ is the set of prime divisors of its order, and $\omega(G)$ is the set of orders of its elements. A graph with the following adjacency relation is defined on $\pi(G)$: different vertices $r$ and $s$ from $\pi(G)$ are adjacent if and only if $rs\in \omega(G)$. This graph is called the Gruenberg-Kegel graph or the prime graph of $G$ and is denoted by $GK(G)$. In A. V. Vasil'ev's Question 16.26 from the "Kourovka Notebook," it is required to describe all pairs of nonisomorphic simple nonabelian groups with identical Gruenberg-Kegel graphs. M. Hagie and M. A. Zvezdina gave such a description in the case where one of the groups coincides with a sporadic group and an alternating group, respectively. The author solved this question for finite simple groups of Lie type over fields of the same characteristic. In the present paper we prove the following theorem. Theorem.  Let $G=A_{n-1}^{\pm}(q)$, where $n\in\{3,4,5,6\}$, and let $G_1$ be a finite simple group of Lie type over a field of order $q_1$ nonisomorphic to $G$, where $q=p^f$, $q_1=p_1^{f_1}$, and $p$ and $p_1$ are different primes. If the graphs $GK(G)$ and $GK(G_1)$ coincide, then one of the following statements holds: $(1)$ $\{G,G_1\}=\{A_1(7),A_1(8)\}$; $(2)$ $\{G,G_1\}=\{A_3(3),{^2}F_4(2)'\}$; $(3)$ $\{G,G_1\}=\{{^2}A_3(3),A_1(49)\}$; $(4)$ $\{G,G_1\}=\{A_2(q),{^3}D_4(q_1)\}$, where $(q-1)_3\neq~3$, $q+1\neq 2^k$, and $q_1>2$; $(5)$ $\{G,G_1\}=\{A_4^{\varepsilon}(q),A_4^{\varepsilon_1}(q_1)\}$, where $qq_1$ is odd; $(6)$ $\{G,G_1\}=\{A_4^{\varepsilon}(q),{^3}D_4(q_1)\}$, where $(q-\epsilon1)_5\neq 5$ and $q_1>2$; $(7)$ $G=A_5^{\varepsilon}(q)$ and $G_1\in\{B_3(q_1),C_3(q_1),D_4(q_1)\}$.
Keywords: finite simple group of Lie type, prime graph, Gruenberg-Kegel graph, spectrum.
Funding agency Grant number
Ural Branch of the Russian Academy of Sciences 18-1-1-17
Ural Federal University named after the First President of Russia B. N. Yeltsin 02.A03.21.0006
This work was supported by the Integrated Program for Fundamental Research of the Ural Branch of the Russian Academy of Sciences (project no. 18-1-1-17) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 10.07.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 307, Issue 1, Pages S179–S195
DOI: https://doi.org/10.1134/S0081543819070150
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 05C25, 20D05, 20D06
Language: Russian
Citation: M. R. Zinov'eva, “On finite simple linear and unitary groups of small size over fields of different characteristics with coinciding prime graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 73–90; Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S179–S195
Citation in format AMSBIB
\Bibitem{Zin18}
\by M.~R.~Zinov'eva
\paper On finite simple linear and unitary groups of small size over fields of different characteristics with coinciding prime graphs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 3
\pages 73--90
\mathnet{http://mi.mathnet.ru/timm1553}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-3-73-90}
\elib{https://elibrary.ru/item.asp?id=35511278}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 307
\issue , suppl. 1
\pages S179--S195
\crossref{https://doi.org/10.1134/S0081543819070150}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000451634900009}
Linking options:
  • https://www.mathnet.ru/eng/timm1553
  • https://www.mathnet.ru/eng/timm/v24/i3/p73
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :46
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024