Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 3, Pages 51–61
DOI: https://doi.org/10.21538/0134-4889-2018-24-3-51-61
(Mi timm1550)
 

Asymptotic expansion of a solution to a singular perturbation optimal control problem with a small coercivity coefficient

A. R. Danilin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: We consider an optimal control problem for solutions of a boundary value problem for a singularly perturbed elliptic operator in a domain $\Omega$ with distributed control
$$ \mathcal{L}_\varepsilon z_\varepsilon\mathop{:=}\nolimits -\varepsilon^2 \Delta z_\varepsilon+ a(x) z_\varepsilon= f + u_\varepsilon, \ \ ~x\in \Omega,\ \ ~z_\varepsilon\in H^1_0(\Omega), $$

$$ u_\varepsilon\in\mathcal{U} \mathop{:=}\nolimits\{u(\cdot)\in L_2(\Omega)~\colon \|u(\cdot)\|\leqslant 1 \,\}, $$

$$ J\mathop{:=}\nolimits \|z_\varepsilon(\cdot)-z_d(\cdot)\|^2 + \nu^{-1}\|u_\varepsilon(\cdot)\|^{2}\rightarrow \mathrm{inf}. $$
A priori bounds are obtained for the optimality system, which show that a formal asymptotic solution of the optimality system is an asymptotic expansion of the required solution of this system. A complete asymptotic expansion in the Erdelyi sense in the powers of the small parameter is constructed for the solution of the optimality system for the optimal control problem under consideration. In contrast to the previous papers on this topic, the nonnegative potential $a(\cdot)$ may vanish at a finite number of points. This problem has greater regularity as compared to the problem of studying the asymptotic expansion of the boundary value problem for this operator. The asymptotic expansion consists of an outer power expansion and an inner expansion (in a neighborhood of the boundary of $\Omega$) with exponentially decreasing coefficients.
Keywords: optimal control, asymptotic expansion, singular perturbation problems, small parameter.
Funding agency
This work was supported by the state project "Development of the concept of positional control, minimax approach, and singular perturbations in the theory of differential equations".
Received: 20.05.2018
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49J20, 34E05
Language: Russian
Citation: A. R. Danilin, “Asymptotic expansion of a solution to a singular perturbation optimal control problem with a small coercivity coefficient”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 51–61
Citation in format AMSBIB
\Bibitem{Dan18}
\by A.~R.~Danilin
\paper Asymptotic expansion of a solution to a singular perturbation optimal control problem with a small coercivity coefficient
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 3
\pages 51--61
\mathnet{http://mi.mathnet.ru/timm1550}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-3-51-61}
\elib{https://elibrary.ru/item.asp?id=35511275}
Linking options:
  • https://www.mathnet.ru/eng/timm1550
  • https://www.mathnet.ru/eng/timm/v24/i3/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024