Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 3, Pages 34–42
DOI: https://doi.org/10.21538/0134-4889-2018-24-3-34-42
(Mi timm1548)
 

Distance-regular locally $pG_{s-6}(s,t)$-graphs of diameter greater than 3

V. V. Bitkina, A. K. Gutnova

North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz
References:
Abstract: J. Koolen suggested the problem of studying distance-regular graphs in which neighborhoods of vertices are strongly regular graphs with the second eigenvalue at most t for some natural $t$. The solution of Koolen's problem consists of two steps: the first step is the enumeration of admissible intersection arrays of such graphs, and the second step is finding the automorphisms of the graphs with these arrays. At present, the first step is complete for $t = 5$ (A. Makhnev, D. Paduchikh, and A. Gutnova; A. Makhnev). The second step is complete for $t = 3$ (A. Makhnev and M. Shermetova). The program of studying distance-regular graphs in which neighborhoods of vertices are strongly regular graphs with the second eigenvalue $r$ such that $5 < r \le 6$ consists of three parts: the theorem of reduction to exceptional local subgraphs, the enumeration of intersection arrays of distance-regular locally exceptional pseudogeometric graphs, and the enumeration of intersection arrays of distance-regular locally exceptional nonpseudogeometric graphs. In this paper we enumerate intersection arrays of distance-regular locally pseudogeometric graphs for $pG_{s-6}(s,t)$ with diameter greater than $3$.
Keywords: distance-regular graph, local subgraph, eigenvalue of a graph.
Received: 20.06.2018
Bibliographic databases:
Document Type: Article
UDC: 519.17+512.54
MSC: 05C25, 20B25
Language: Russian
Citation: V. V. Bitkina, A. K. Gutnova, “Distance-regular locally $pG_{s-6}(s,t)$-graphs of diameter greater than 3”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 34–42
Citation in format AMSBIB
\Bibitem{BitGut18}
\by V.~V.~Bitkina, A.~K.~Gutnova
\paper Distance-regular locally $pG_{s-6}(s,t)$-graphs of diameter greater than 3
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 3
\pages 34--42
\mathnet{http://mi.mathnet.ru/timm1548}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-3-34-42}
\elib{https://elibrary.ru/item.asp?id=35511273}
Linking options:
  • https://www.mathnet.ru/eng/timm1548
  • https://www.mathnet.ru/eng/timm/v24/i3/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:180
    Full-text PDF :32
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024