Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 2, Pages 123–140
DOI: https://doi.org/10.21538/0134-4889-2018-24-2-123-140
(Mi timm1528)
 

On computing a class of integrals of rational functions with parameters and singularities on complex hyperplanes

V. P. Krivokolesko

Siberian Federal University, Krasnoyarsk
References:
Abstract: We give an algorithm for computing the integral
$$\displaystyle\int_{|\xi_1|=1}\ldots\displaystyle\int_{|\xi_n|=1}\frac{f(\xi)}{ \prod \limits_{j=1}^m (a_{j,1}z_1 \xi_1+\ldots+a_{j,n}z_n \xi_n+c_j)^{t_j}}\cdot \frac{d\xi_1}{\xi_1}\ldots\frac{d\xi_n}{\xi_n},$$
where the integration set is the distinguished boundary of the unit polydisk in $\mathbb C^n$, the function $f(\xi)$ is holomorphic in a neighborhood of this set, and $\prod_{j=1}^m (a_{j,1}z_1 \xi_1+\ldots+a_{j,n}z_n \xi_n+c_j)\not=0$ for points $z=(z_1,\ldots, z_n)$ of a connected $n$-circular set $G\subset\mathbb C^n $. For points of the distinguished boundary, whose coordinates satisfy the relations $|\xi_1|=1$, $\ldots$, $|\xi_n|=1$, the sets $\{V_j\}=\{(z_1,\ldots,z_n)\in\mathbb C^n\colon a_{j,1}z_1 \xi_1+\ldots+a_{j,n}z_n \xi_n+c_j=0\}$ are $n$-circular, and it is convenient to study their mutual arrangement in $\mathbb C^n$ by using the projection $\pi\colon \mathbb C^n\rightarrow \mathbb R^n_{+}$, where $\pi(z_1,\ldots,z_n)=(|z_1|,\ldots,|z_n|)$. A connected set $\pi(\{V_j\})$ divides $\mathbb R^n_+$ into at most $n+1$ disjoint nonempty parts, and $\pi(G)$ belongs to one of them. Therefore the number of variants of the mutual arrangement of the sets $G$ and $\{V_1\},\ldots,\{V_m\}$ in $\mathbb C^n$, which influences the value of the integral, does not exceed $(n+1)^m$. In Theorems 1 and 2 we compute the integral for two of these variants. An example of computing a double integral by applying its parameterization and one of the theorems is given.
Keywords: integral representation, n-circular domain, complex plane.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-9149.2016.1
14.Y26.31.0006
Received: 09.10.2017
Bibliographic databases:
Document Type: Article
UDC: 517.55+519.117
MSC: 32A07, 32A26, 05A19
Language: Russian
Citation: V. P. Krivokolesko, “On computing a class of integrals of rational functions with parameters and singularities on complex hyperplanes”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 2, 2018, 123–140
Citation in format AMSBIB
\Bibitem{Kri18}
\by V.~P.~Krivokolesko
\paper On computing a class of integrals of rational functions with parameters and singularities on complex hyperplanes
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 2
\pages 123--140
\mathnet{http://mi.mathnet.ru/timm1528}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-2-123-140}
\elib{https://elibrary.ru/item.asp?id=35060683}
Linking options:
  • https://www.mathnet.ru/eng/timm1528
  • https://www.mathnet.ru/eng/timm/v24/i2/p123
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :30
    References:30
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024