Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 2, Pages 93–106
DOI: https://doi.org/10.21538/0134-4889-2018-24-2-93-106
(Mi timm1526)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the equivalence of some inequalities in the theory of approximation of periodic functions in the spaces $L_p(\mathbb T),1 < p < \infty$

N. A. Il'yasov

Baku State University
Full-text PDF (250 kB) Citations (1)
References:
Abstract: We propose a method for proving, in particular, the equivalence of M.F. Timan's known estimates for the $r$th-order $L_{p}$-moduli of smoothness $\omega_{r}(f;{\pi/n})_{p}$ and O.V. Besov's estimates for the $L_p$-norms $\|f^{(r)}\|_{p}$ of $r$th-order derivatives by using elements of the sequence $\{E_{n-1}(f)_{p}\}_{n=1}^{\infty}$ of the best approximations of a $2\pi$-periodic function $f\in L_{p}(\mathbb T)$ by trigonometric polynomials of order at most $n-1$, $n\in \mathbb N$, where $r\in \mathbb N$, $1 < p < \infty$, and $\mathbb T=(-\pi,\pi]$. Theorem 1.  Let $1 < p < \infty$, $\theta=\min\{2,p\}$, $r\in \mathbb N$, $f\in L_{p}(\mathbb T)$, and $\sum_{n=1}^{\infty}n^{\theta r-1} E_{n-1}^{\theta}(f)_{p} < \infty$. Then the inequality $\omega_{r}(f;\pi/n)_{p}\le C_{1}(r,p)n^{-r}\Big(\sum_{\nu=1}^{n}\nu^{\theta r-1}E_{\nu-1}^{\theta}(f)_{p}\Big)^{1/\theta}$, $n\in \mathbb N$, is satisfied if and only if $f\in L_{p}^{(r)}(\mathbb T)$ and $\|f^{(r)}\|_{p} \le C_{2}(r,p) \Big(\sum_{n=1}^{\infty}n^{\theta r-1} E_{n-1}^{\theta}(f)_{p}\Big)^{1/\theta}$, where $L_{p}^{(r)}(\mathbb T)$ is the class of functions $f\in L_{p}(\mathbb T)$ with absolutely continuous derivative of the $(r-1)$th order and $f^{(r)} \in L_{p}(\mathbb T)$. Theorem 2.  Suppose that $1 < p < \infty$, $\beta=\max\{2,p\}$, $r\in \mathbb N$, and $f\in L_{p}^{(r)}(\mathbb T)$. Then the inequality  $n^{-r}\Big(\sum_{\nu=1}^{n}\nu^{\beta r-1} E_{\nu-1}^{\beta}(f)_{p}\Big)^{1/\beta}\le C_{3}(r,p)\omega_{r}(f;\pi/n)_{p}$ is satisfied for $n\in \mathbb N$ if and only if the inequality $\Big(\sum_{n=1}^{\infty}n^{\beta r-1}E_{n-1}^{\beta}(f)_{p}\Big)^{1/\beta}\le C_{4}(r,p)\|f^{(r)}\|_{p}$ is satisfied. In view of the order identity $\sum_{\nu=1}^{n}\nu^{\alpha r-1}E_{\nu-1}^{\alpha}(f)_{p}\asymp\sum_{\nu=1}^{n}\nu^{\alpha r-1} \omega_{l}^{\alpha}(f;\pi/\nu)_{p}$, $n\in\mathbb N\cup\{+\infty\}$, where $1\le\alpha < \infty$, $l\in\mathbb N$, and $l>r$, the assertions of Theorems 1 and 2 remain valid if we replace the sequence $\{E_{n-1}(f)_{p}\}_{n=1}^{\infty}$ by the sequence $\{\omega_{l}(f;\pi/n)_{p}\}_{n=1}^{\infty}$ (Theorems 3 and 4). The method used in the proof of Theorems 1 and 2 can be applied to derive equivalent upper estimates and equivalent lower estimates for the values $E_{n-1}(f^{(r)})_{p}$ and $\omega_{k}(f^{(r)};\pi/n)_{p}$, $n\in \mathbb N$, by means of elements of the sequence $\{E_{n-1}(f)_{p}\}_{n=1}^{\infty}$, where $k,r\in \mathbb N$ and $1 < p < \infty$.
Keywords: best approximation, modulus of smoothness, inequalities of approximation theory, equivalent inequalities, Timan's inequalities, Besov's inequalitie.
Received: 13.03.2018
Bibliographic databases:
Document Type: Article
UDC: 517.518.832
Language: Russian
Citation: N. A. Il'yasov, “On the equivalence of some inequalities in the theory of approximation of periodic functions in the spaces $L_p(\mathbb T),1 < p < \infty$”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 2, 2018, 93–106
Citation in format AMSBIB
\Bibitem{Ily18}
\by N.~A.~Il'yasov
\paper On the equivalence of some inequalities in the theory of approximation of periodic functions in the spaces $L_p(\mathbb T),1 < p < \infty$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 2
\pages 93--106
\mathnet{http://mi.mathnet.ru/timm1526}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-2-93-106}
\elib{https://elibrary.ru/item.asp?id=35060681}
Linking options:
  • https://www.mathnet.ru/eng/timm1526
  • https://www.mathnet.ru/eng/timm/v24/i2/p93
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:392
    Full-text PDF :144
    References:82
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024