Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 2, Pages 54–63
DOI: https://doi.org/10.21538/0134-4889-2018-24-2-54-63
(Mi timm1523)
 

Automorphisms of a distance-regular graph with intersection array {35, 32, 28; 1, 4, 8}

M. P. Golubyatnikov

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: We continue the study of automorphisms of distance-regular locally cyclic graphs with at most 4096 vertices (the intersection arrays of such graphs were found earlier by A.A. Makhnev and M.S. Nirova). Let $\Gamma$ be a distance-regular graph with intersection array $\{35,32,28;1,4,8\}$. Then it has eigenvalue $\theta_2=-1$ and the graph $\bar \Gamma_3$ is pseudogeometric for the net $pG_8(35,8)$ and has parameters $(1296,315,90,72)$. We study possible automorphisms of such graphs. In particular, for a graph $\Gamma$ with intersection array $\{35,32,28;1,4,8\}$ and $G={\rm Aut}(\Gamma)$, it is proved that $\pi(G)\subseteq \{2,3,5,7\}$. Further, if a nonsolvable group $G={\rm Aut}(\Gamma)$ acts transitively on the vertex set of a graph with intersection array $\{35,32,28;1,4,8\}$ and $\bar T$ is the socle of the group $\bar G=G/S(G)$, then $G=S(G)G_a$, $\bar T_a\cong A_5$, and $\bar T_{a,b}\cong A_4$ for some vertices $a\in \Gamma$ and $b\in [a]$.
Keywords: strongly regular graph, distance-regular graph, graph automorphism.
Received: 27.02.2018
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C25
Language: Russian
Citation: M. P. Golubyatnikov, “Automorphisms of a distance-regular graph with intersection array {35, 32, 28; 1, 4, 8}”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 2, 2018, 54–63
Citation in format AMSBIB
\Bibitem{Gol18}
\by M.~P.~Golubyatnikov
\paper Automorphisms of a distance-regular graph with intersection array {35, 32, 28; 1, 4, 8}
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 2
\pages 54--63
\mathnet{http://mi.mathnet.ru/timm1523}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-2-54-63}
\elib{https://elibrary.ru/item.asp?id=35060678}
Linking options:
  • https://www.mathnet.ru/eng/timm1523
  • https://www.mathnet.ru/eng/timm/v24/i2/p54
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :46
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024