Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 1, Pages 257–272
DOI: https://doi.org/10.21538/0134-4889-2018-24-1-257-272
(Mi timm1513)
 

This article is cited in 20 scientific papers (total in 20 papers)

Bitopological spaces of ultrafilters and maximal linked systems

A. G. Chentsovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: Issues of the structure of spaces of ultrafilters and maximal linked systems are studied. We consider a widely understood measurable space (a $\pi$-system with zero and one) defined as follows: we fix a nonempty family of subsets of a given set closed under finite intersections and containing the set itself ("one") and the nonempty set ("zero"). Ultrafilters (maximal filters) and maximal linked systems are constructed on this space. Each of the obtained spaces is equipped with a pair of comparable topologies. The resulting bitopological spaces turn out to be consistent in the following sense: each space of ultrafilters is a subspace of the corresponding space of maximal linked systems. Moreover, the space of maximal linked systems with Wallman-type topology is supercompact and, in particular, compact. Possible variants of the $\pi$-systems are lattices, semialgebras and algebras of sets, topologies, and families of closed sets of topological spaces.
Keywords: maximal linked system, topological space, ultrafilter.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00410
Received: 11.01.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 305, Issue 1, Pages S24–S39
DOI: https://doi.org/10.1134/S0081543819040059
Bibliographic databases:
Document Type: Article
UDC: 519.6
MSC: 54A09, 54A10, 54B05
Language: Russian
Citation: A. G. Chentsov, “Bitopological spaces of ultrafilters and maximal linked systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 1, 2018, 257–272; Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S24–S39
Citation in format AMSBIB
\Bibitem{Che18}
\by A.~G.~Chentsov
\paper Bitopological spaces of ultrafilters and maximal linked systems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 1
\pages 257--272
\mathnet{http://mi.mathnet.ru/timm1513}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-1-257-272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3782952}
\elib{https://elibrary.ru/item.asp?id=32604062}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 305
\issue , suppl. 1
\pages S24--S39
\crossref{https://doi.org/10.1134/S0081543819040059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436169800022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073537654}
Linking options:
  • https://www.mathnet.ru/eng/timm1513
  • https://www.mathnet.ru/eng/timm/v24/i1/p257
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:342
    Full-text PDF :62
    References:58
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024