Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 1, Pages 93–105
DOI: https://doi.org/10.21538/0134-4889-2018-24-1-93-105
(Mi timm1499)
 

This article is cited in 11 scientific papers (total in 11 papers)

On fixed points of multivalued mappings in spaces with a vector-valued metric

E. S. Zhukovskiyab, E. A. Panasenkoa

a Tambov State University named after G.R. Derzhavin
b Peoples Friendship University of Russia
References:
Abstract: Nadler's theorem on a fixed point of a multivalued mapping is extended to spaces with a vector-valued metric. A vector-valued metric is understood as a mapping with the properties of a usual metric and values in a linear normed ordered space. We prove an analog of Nadler's theorem and apply it to a system of integral inclusions in a space of summable functions. Then we study a boundary value problem with multivalued conditions for systems of functional differential equations by means of reduction to a system of integral inclusions. Conditions for the existence of solutions are obtained and estimates of the solutions are given. The existence conditions do not contain the convexity requirement for the values of the multivalued function generating a Nemytskii operator.
Keywords: space with a vector-valued metric, contracting multivalued mapping, fixed point, integral inclusion.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 3.8515.2017/БЧ
Russian Foundation for Basic Research 17-01-00553
16-01-00386
Russian Science Foundation 17-11-01168
Received: 09.10.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 305, Issue 1, Pages S191–S203
DOI: https://doi.org/10.1134/S0081543819040199
Bibliographic databases:
Document Type: Article
UDC: 515.124+517.988.6+517.911.5
MSC: 54E35, 54H25, 34K09
Language: Russian
Citation: E. S. Zhukovskiy, E. A. Panasenko, “On fixed points of multivalued mappings in spaces with a vector-valued metric”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 1, 2018, 93–105; Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S191–S203
Citation in format AMSBIB
\Bibitem{ZhuPan18}
\by E.~S.~Zhukovskiy, E.~A.~Panasenko
\paper On fixed points of multivalued mappings in spaces with a vector-valued metric
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 1
\pages 93--105
\mathnet{http://mi.mathnet.ru/timm1499}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-1-93-105}
\elib{https://elibrary.ru/item.asp?id=32604047}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 305
\issue , suppl. 1
\pages S191--S203
\crossref{https://doi.org/10.1134/S0081543819040199}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436169800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073510882}
Linking options:
  • https://www.mathnet.ru/eng/timm1499
  • https://www.mathnet.ru/eng/timm/v24/i1/p93
  • This publication is cited in the following 11 articles:
    1. V. Obukhovskii, T. Ul'vacheva, “On a Class of Condensing Multivalued Maps”, Lobachevskii J Math, 45:1 (2024), 491  crossref
    2. T. N. Fomenko, “Zeros of Conic Functions, Fixed Points, and Coincidences”, Dokl. Math., 2024  crossref
    3. T. N. Fomenko, “Zeros of conic functions, fixed points and coincidences”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 517:1 (2024), 74  crossref
    4. E. A. Panasenko, “On Operator Inclusions in Spaces with Vector-Valued Metrics”, Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S222–S242  mathnet  crossref  crossref  mathscinet  elib
    5. Evgeny Zhukovskiy, Elena Panasenko, “Extension of the Kantorovich Theorem to Equations in Vector Metric Spaces: Applications to Functional Differential Equations”, Mathematics, 12:1 (2023), 64  crossref
    6. E. S. Zhukovskiy, “A Note on Generalized Contraction Theorems”, Math. Notes, 111:2 (2022), 211–216  mathnet  crossref  crossref  mathscinet  isi
    7. Aram V. Arutyunov, Evgeny S. Zhukovskiy, Sergey E. Zhukovskiy, Zukhra T. Zhukovskaya, “Kantorovich's Fixed Point Theorem and Coincidence Point Theorems for Mappings in Vector Metric Spaces”, Set-Valued Var. Anal, 30:2 (2022), 397  crossref
    8. E. S. Zhukovskii, “O probleme suschestvovaniya nepodvizhnoi tochki obobschenno szhimayuschego mnogoznachnogo otobrazheniya”, Vestnik rossiiskikh universitetov. Matematika, 26:136 (2021), 372–381  mathnet  crossref
    9. T. V. Zhukovskaya, E. A. Pluzhnikova, “Mnozhestvo regulyarnosti mnogoznachnogo otobrazheniya v prostranstve s vektornoznachnoi metrikoi”, Vestnik rossiiskikh universitetov. Matematika, 24:125 (2019), 39–46  mathnet  crossref  elib
    10. E. S. Zhukovskiy, “The fixed points of contractions of f-quasimetric spaces”, Siberian Math. J., 59:6 (2018), 1063–1072  mathnet  crossref  crossref  isi  elib
    11. E. A. Pluzhnikova, T. V. Zhukovskaya, Yu. A. Moiseev, “O mnozhestvakh metricheskoi regulyarnosti otobrazhenii v prostranstvakh s vektornoznachnoi metrikoi”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 23:123 (2018), 547–554  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:485
    Full-text PDF :111
    References:74
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025