Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 4, Pages 301–310
DOI: https://doi.org/10.21538/0134-4889-2017-23-4-301-310
(Mi timm1489)
 

Attainable best guarantee for the accuracy of $k$-medians clustering in $[0,1]$

M. Yu. Khachaiabc, D. M. Khachaiab, V. S. Pankratova

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia
b Ural Federal University, Ekaterinburg, 620002 Russia
c Omsk State Technical University, Omsk, 644050 Russia
References:
Abstract: The scalar $k$-medians clustering problem is considered in the context of a two-player zero-sum game. The set of strategies of the first player coincides with a family of fixed-length samples from the interval $[0,1]$. The strategies of the second player are all possible partitions of an arbitrary sample of a given length into a given number of clusters. The quality of the clustering is evaluated by the payoff function equal to the sum of deviations of the elements from the centers of clusters nearest to them. It is easy to see that the game has no value except for rare cases. For arbitrary positive integers $n$ and $k$, we establish an upper bound $0.5n/(2k-1)$ for the lower value of the game and prove its attainability for $k>1$ and sufficiently large $n=n(k)$. Thus, we show that a clustering of an arbitrary sample of length $n$ can be constructed by the $k$ medians method so that the payoff does not exceed the obtained bound, and the bound is attainable for an arbitrary number of clusters and for sufficiently long samples. These results are applicable in combinatorial optimization in the proof of polynomial solvability of subclasses of intractable extremal problems.
Keywords: clustering, $k$-medians problem, attainable accuracy guarantee.
Funding agency Grant number
Russian Foundation for Basic Research 16-07-00266
17-08-01385
Received: 22.09.2017
Bibliographic databases:
Document Type: Article
UDC: 519.16 + 519.85
MSC: 90C27, 90C05, 62H30
Language: Russian
Citation: M. Yu. Khachai, D. M. Khachai, V. S. Pankratov, “Attainable best guarantee for the accuracy of $k$-medians clustering in $[0,1]$”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 301–310
Citation in format AMSBIB
\Bibitem{KhaKhaPan17}
\by M.~Yu.~Khachai, D.~M.~Khachai, V.~S.~Pankratov
\paper Attainable best guarantee for the accuracy of $k$-medians clustering in~$[0,1]$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 4
\pages 301--310
\mathnet{http://mi.mathnet.ru/timm1489}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-4-301-310}
\elib{https://elibrary.ru/item.asp?id=30713983}
Linking options:
  • https://www.mathnet.ru/eng/timm1489
  • https://www.mathnet.ru/eng/timm/v23/i4/p301
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :43
    References:32
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024