Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 4, Pages 253–256
DOI: https://doi.org/10.21538/0134-4889-2017-23-4-253-256
(Mi timm1484)
 

This article is cited in 2 scientific papers (total in 2 papers)

A metanilpotency criterion for a finite solvable group

V. S. Monakhov

Francisk Skorina Gomel State University, Gomel, 246019, Republic of Belarus
Full-text PDF (145 kB) Citations (2)
References:
Abstract: Denote by $|x|$ the order of an element $x$ of a group. An element of a group is called primary if its order is a nonnegative integer power of a prime. If $a$ and $b$ are primary elements of coprime orders of a group, then the commutator $a^{-1}b^{-1}ab$ is called a $\star$-commutator. The intersection of all normal subgroups of a group such that the quotient groups by them are nilpotent is called the nilpotent residual of the group. It is established that the nilpotent residual of a finite group is generated by commutators of primary elements of coprime orders. It is proved that the nilpotent residual of a finite solvable group is nilpotent if and only if $|ab|\ge|a||b|$ for any $\star$-commutators of $a$ and $b$ of coprime orders.
Keywords: finite group, formation, residual, nilpotent group, commutator.
Received: 30.08.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 304, Issue 1, Pages S141–S143
DOI: https://doi.org/10.1134/S0081543819020159
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20D15, 20F12, 20F17
Language: Russian
Citation: V. S. Monakhov, “A metanilpotency criterion for a finite solvable group”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 253–256; Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S141–S143
Citation in format AMSBIB
\Bibitem{Mon17}
\by V.~S.~Monakhov
\paper A metanilpotency criterion for a finite solvable group
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 4
\pages 253--256
\mathnet{http://mi.mathnet.ru/timm1484}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-4-253-256}
\elib{https://elibrary.ru/item.asp?id=30713978}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 304
\issue , suppl. 1
\pages S141--S143
\crossref{https://doi.org/10.1134/S0081543819020159}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521700023}
Linking options:
  • https://www.mathnet.ru/eng/timm1484
  • https://www.mathnet.ru/eng/timm/v23/i4/p253
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024