Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 4, Pages 232–242
DOI: https://doi.org/10.21538/0134-4889-2017-23-4-232-242
(Mi timm1482)
 

Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$

A. A. Makhnevab, D. V. Paduchikha, M. M. Khamgokovaa

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia
b Ural Federal University, Ekaterinburg, 620002 Russia
References:
Abstract: A graph $\varGamma$ is called $t$-isoregular if, for any $i\le t$ and any $i$-vertex subset $S$, the number $\varGamma(S)$ depends only on the isomorphism class of the subgraph induced by $S$. A graph $\varGamma$ on $v$ vertices is called absolutely isoregular if it is $(v-1)$-isoregular. It is known that each $5$-isoregular graph is absolutely isoregular, and such graphs have been fully described. Each exactly $4$-isoregular graph is either a pseudogeometric graph for pG$_r(2r,2r^3+3r^2-1)$ or its complement. By Izo$(r)$ we denote a pseudogeometric graph for pG$_r(2r,2r^3+3r^2-1)$. Graphs Izo$(r)$ do not exist for an infinite set of values of $r$ ($r=3,4,6,10,\ldots$). The existence of Izo$(5)$ is unknown. In this work we find possible automorphisms for the neighborhood of an edge from Izo$(5)$.
Keywords: isoregular graph, strongly regular graph, pseudogeometric graph.
Funding agency Grant number
Russian Science Foundation 15-11-10025
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
Received: 24.04.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 304, Issue 1, Pages S112–S122
DOI: https://doi.org/10.1134/S0081543819020123
Bibliographic databases:
Document Type: Article
UDC: 519.17+512.54
MSC: 05C25
Language: Russian
Citation: A. A. Makhnev, D. V. Paduchikh, M. M. Khamgokova, “Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 232–242; Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S112–S122
Citation in format AMSBIB
\Bibitem{MakPadKha17}
\by A.~A.~Makhnev, D.~V.~Paduchikh, M.~M.~Khamgokova
\paper Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 4
\pages 232--242
\mathnet{http://mi.mathnet.ru/timm1482}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-4-232-242}
\elib{https://elibrary.ru/item.asp?id=30713976}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 304
\issue , suppl. 1
\pages S112--S122
\crossref{https://doi.org/10.1134/S0081543819020123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521700021}
Linking options:
  • https://www.mathnet.ru/eng/timm1482
  • https://www.mathnet.ru/eng/timm/v23/i4/p232
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :42
    References:39
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024