Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 4, Pages 212–221
DOI: https://doi.org/10.21538/0134-4889-2017-23-4-212-221
(Mi timm1480)
 

This article is cited in 2 scientific papers (total in 2 papers)

Quazoids in knot theory

F. G. Korablevab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia
b Chelyabinsk State University, Chelyabinsk, 454001 Russia
Full-text PDF (226 kB) Citations (2)
References:
Abstract: This paper is devoted to the definition and construction of quazoids, which are algebraic objects generating invariants of oriented knots and links. Such an invariant can be described in the terms of the number of proper colorings of the regions into which the diagram of a knot decomposes a 2-sphere. A coloring by elements of a set $X$ is proper if the color diagrams of all four regions are matched by means of a function $Q\colon X\times X\times X\to X$ in the neighborhood of each double point. This function is called a quazoid over the set $X$. In the paper we construct two infinite series of quazoids. The first series is formed by linear quazoids over finite rings. The second series consists of quazoids generated by finite biquasiles. The invariants of knots and links generated by quazoids are nontrivial and can be used to distinguish knots. We show that all knots and links admitting diagrams with at most six double points are distinguished by linear quazoids over $\mathbb{Z}_n$, where $n\leqslant 11$. We give results of the computer enumeration of all different quazoids over sets whose cardinality does not exceed $4$.
Keywords: knot, quazoid, biquasile, invariant.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00690
Received: 31.08.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 303, Issue 1, Pages 156–165
DOI: https://doi.org/10.1134/S008154381809016X
Bibliographic databases:
Document Type: Article
UDC: 515.162.8
MSC: 57M25
Language: Russian
Citation: F. G. Korablev, “Quazoids in knot theory”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 212–221; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 156–165
Citation in format AMSBIB
\Bibitem{Kor17}
\by F.~G.~Korablev
\paper Quazoids in knot theory
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 4
\pages 212--221
\mathnet{http://mi.mathnet.ru/timm1480}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-4-212-221}
\elib{https://elibrary.ru/item.asp?id=30713974}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 303
\issue , suppl. 1
\pages 156--165
\crossref{https://doi.org/10.1134/S008154381809016X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521700019}
Linking options:
  • https://www.mathnet.ru/eng/timm1480
  • https://www.mathnet.ru/eng/timm/v23/i4/p212
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:272
    Full-text PDF :76
    References:34
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024