Abstract:
In the paper, a modification of the dynamical algorithm by Yu. S. Osipov and A. V. Kryazhimskii is suggested. This modification possesses in the space L1 an asymptotic order of accuracy arbitrarily close to 1/2. A possibility to attain this order in the class of finite-step dynamical algorithms is considered.
Citation:
A. Yu. Vdovin, A. V. Kim, S. S. Rubleva, “On asymptotic accuracy in L1 of a dynamical algorithm for reconstructing a disturbance”, Control, stability, and inverse problems of dynamics, Trudy Inst. Mat. i Mekh. UrO RAN, 12, no. 2, 2006, 18–26; Proc. Steklov Inst. Math. (Suppl.), 255, suppl. 2 (2006), S216–S224
\Bibitem{VdoKimRub06}
\by A.~Yu.~Vdovin, A.~V.~Kim, S.~S.~Rubleva
\paper On asymptotic accuracy in $L_1$ of a~dynamical algorithm for reconstructing a~disturbance
\inbook Control, stability, and inverse problems of dynamics
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2006
\vol 12
\issue 2
\pages 18--26
\mathnet{http://mi.mathnet.ru/timm148}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338258}
\zmath{https://zbmath.org/?q=an:1132.34014}
\elib{https://elibrary.ru/item.asp?id=12040733}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2006
\vol 255
\issue , suppl. 2
\pages S216--S224
\crossref{https://doi.org/10.1134/S0081543806060174}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846960197}
Linking options:
https://www.mathnet.ru/eng/timm148
https://www.mathnet.ru/eng/timm/v12/i2/p18
This publication is cited in the following 5 articles:
A. Yu. Vdovin, S. S. Rubleva, Springer Proceedings in Mathematics & Statistics, 318, Mathematical Analysis With Applications, 2020, 25
A. Yu. Vdovin, S. S. Rubleva, “On the Guaranteed Accuracy of a Dynamical Recovery Procedure for Controls with Bounded Variation in Systems Depending Linearly on the Control”, Math. Notes, 87:3 (2010), 316–335
A. Yu. Vdovin, S. S. Rubleva, “O dinamicheskom algoritme modelirovaniya proizvodnoi s optimalnym poryadkom tochnosti”, Trudy sedmoi Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem (3–6 iyunya 2010 g.). Chast 2, Modelirovanie i optimizatsiya dinamicheskikh sistem i sistem s raspredelennymi parametrami, Matem. modelirovanie i kraev. zadachi, Samarskii gosudarstvennyi tekhnicheskii universitet, Samara, 2010, 45–48
Andrei Y. Vdovin, Svetlana S. Rubleva, “On Stable Reconstruction of the Impact in the System of Ordinary Differential Equations”, AM, 01:02 (2010), 118
S. S. Rubleva, “O modifikatsii odnogo dinamicheskogo algoritma, garantiruyuschego vosstanovlenie upravleniya v dinamicheskoi sisteme s vyrozhdennoi matritsei”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2008, no. 2, 119–121