|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2006, Volume 12, Number 2, Pages 18–26
(Mi timm148)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
On asymptotic accuracy in $L_1$ of a dynamical algorithm for reconstructing a disturbance
A. Yu. Vdovin, A. V. Kim, S. S. Rubleva
Abstract:
In the paper, a modification of the dynamical algorithm by Yu. S. Osipov and A. V. Kryazhimskii is suggested. This modification possesses in the space $L_1$ an asymptotic order of accuracy arbitrarily close to 1/2. A possibility to attain this order in the class of finite-step dynamical algorithms is considered.
Received: 13.03.2006
Citation:
A. Yu. Vdovin, A. V. Kim, S. S. Rubleva, “On asymptotic accuracy in $L_1$ of a dynamical algorithm for reconstructing a disturbance”, Control, stability, and inverse problems of dynamics, Trudy Inst. Mat. i Mekh. UrO RAN, 12, no. 2, 2006, 18–26; Proc. Steklov Inst. Math. (Suppl.), 255, suppl. 2 (2006), S216–S224
Linking options:
https://www.mathnet.ru/eng/timm148 https://www.mathnet.ru/eng/timm/v12/i2/p18
|
|