Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 4, Pages 162–175
DOI: https://doi.org/10.21538/0134-4889-2017-23-4-162-175
(Mi timm1476)
 

On the order of decrease of uniform moduli of smoothness for the classes of periodic functions $H_{p}^{l}[\omega],\ l\in \mathbb N,\ 1\le p < \infty$

N. A. Il'yasov

Baku State University, Baku, Azerbaijan
References:
Abstract: S. B. Stechkin posed the following problem: for given $1\le p<q\le\infty$, $r\in\mathbb Z_{+}$, $l,k\in\mathbb N$, and $\omega \in\Omega_{l}(0,\pi]$, find the exact order of decrease of the $L_{q}(\mathbb T)$-modulus of smoothness of the $k$th order $\omega_{k}(f^{(r)};\delta)_{q}$ on the classes of $2\pi$-periodic functions $H_{p}^{l}[\omega]=\{f\in L_{p}(\mathbb T):$ $\omega_{l}(f;\delta)_{p}\le\omega(\delta),\,\delta\in(0,\pi]\}$, where $\mathbb T=(-\pi,\pi]$, $L_{\infty}(\mathbb T)\equiv C(\mathbb T)$, and $\Omega_{l}(0,\pi]$ is the class of functions $\omega=\omega(\delta)$ defined on $(0,\pi]$ and satisfying the conditions $0<\omega(\delta)\downarrow 0\ (\delta\downarrow 0)$ and $\delta^{-l}\omega(\delta)\downarrow (\delta\uparrow)$. Earlier the author solved this problem in the case $1\le p<q<\infty$. In the present paper, we give a solution in the case $1\le p<q=\infty$; more exactly, we prove the following theorems.

Theorem 1. Suppose that $1\le p<\infty$, $f\in L_{p}(\mathbb T)$, $r\in\mathbb Z_{+}$, $l,k\in\mathbb N$, $l>\sigma=r+1/p$, $\rho=l-(k+\sigma)$, and $\sum_{n=1}^{\infty}n^{\sigma-1}\omega_{l}(f;\pi/n)_p<\infty$. Then $f$ is equivalent to some function $\psi\in C^{r}(\mathbb T)$and the following estimate holds:$\omega_{k}(\psi^{(r)};\pi/n)_{\infty} \le C_{1}(l,k,r,p)\Big\{\sum_{\nu=n+1}^{\infty}\nu^{\sigma-1}\omega_{l}(f;\pi/\nu)_{p}+ \chi(\rho)n^{-k}\sum_{\nu=1}^{n}\nu^{k+\sigma-1}\omega_{l}(f;\pi/\nu)_{p}\Big\}$, $n\in\mathbb N$, where $\chi(t)=0$ for $t\le 0$, $\chi(t)=1$ for $t>0$, and $C^{r}(\mathbb T)$ is the class of functions $\psi \in C(\mathbb T)$ that have the usual $r$th-order derivative $\psi^{(r)}\in C(\mathbb T)$ $($we assume that $\psi^{(0)}=\psi$ and $C^{(0)}(\mathbb T)=C(\mathbb T))$.

Note that this estimate covers all possible cases of relations between $l$ and $k+r$.

Theorem 2. Suppose that $1\le p<\infty$, $r\in\mathbb Z_{+}$, $l,k\in\mathbb N$, $l>\sigma=r+1/p$, $\rho=l-(k+\sigma)$, $\omega \in\Omega_{l}(0,\pi]$, and $\sum_{n=1}^{\infty}n^{\sigma-1}\omega(\pi/n)<\infty$. Then $\sup\{\omega_{k}(\psi^{(r)};\pi/n)_{\infty}:$ $f\in H_{p}^{l}[\omega]\}\asymp\sum_{\nu=n+1}^{\infty}\nu^{\sigma-1}\omega(\pi/\nu)+\chi(\rho)n^{-k} \times \sum_{\nu=1}^{n}\nu^{k+\sigma-1}\omega(\pi/\nu)$, $n\in\mathbb N$, where $\psi$ denotes the corresponding function from $C^{r}(\mathbb T)$ equivalent to $f\in H_{p}^{l}[\omega]$.

In Theorems $1$ and $2$, the case $l=k+\sigma=k+r+1/p$ $(\Rightarrow \chi(\rho)=0)$ is of the most interest. This case is possible only for $p=1$, since $r\in\mathbb Z_{+}$ and $l,k\in\mathbb N$. In this case, the proof of the estimate in Theorem $1$ employs the inequality $n^{-l}\|T_{n,1}^{(l)}(f;\cdot)\|_{\infty} \le C_{2}(l)n\omega_{l+1}(f;\pi/n)_{1}$, where $T_{n,1}(f;\cdot)$ is a best approximation polynomial for the function $f\in L_{1}(\mathbb T)$. The latter inequality is derived from the strengthened version of the inequality of different metrics for derivatives of arbitrary trigonometric polynomials $\|t_{n}^{(l)}(\cdot)\|_{\infty}\le 2^{-1}\pi\|t_{n}^{(l+1)}(\cdot)\|_{1}$, $n\in\mathbb N$.
Keywords: modulus of smoothness, best approximation, inequality between moduli of smoothness of different orders in different metrics, exact order of decrease for uniform moduli of smoothness on a class.
Received: 10.08.2017
Bibliographic databases:
Document Type: Article
UDC: 517.518.28+517.518.862
MSC: 42A10, 41A17, 41A25
Language: Russian
Citation: N. A. Il'yasov, “On the order of decrease of uniform moduli of smoothness for the classes of periodic functions $H_{p}^{l}[\omega],\ l\in \mathbb N,\ 1\le p < \infty$”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 162–175
Citation in format AMSBIB
\Bibitem{Ily17}
\by N.~A.~Il'yasov
\paper On the order of decrease of uniform moduli of smoothness for the classes of periodic functions~$H_{p}^{l}[\omega],\ l\in \mathbb N,\ 1\le p < \infty$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 4
\pages 162--175
\mathnet{http://mi.mathnet.ru/timm1476}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-4-162-175}
\elib{https://elibrary.ru/item.asp?id=30713970}
Linking options:
  • https://www.mathnet.ru/eng/timm1476
  • https://www.mathnet.ru/eng/timm/v23/i4/p162
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:416
    Full-text PDF :152
    References:91
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024