Abstract:
A.A. Makhnev, D.V. Paduchikh, and M. M. Khamgokova gave a classification of distance-regular locally\linebreak GQ(5,3)-graphs. In particular, there arises an AT4(4,4,2)-graph with intersection array {96,75,16,1;1,16,75,96} on 644 vertices. The same authors proved that an AT4(4,4,2)-graph is not a locally GQ(5,3)-graph. However, the existence of an AT4(4,4,2)-graph that is a locally pseudo GQ(5,3)-graph is unknown. The antipodal quotient of an AT4(4,4,2)-graph is a strongly regular graph with parameters (322,96,20,32). These two graphs are locally pseudo GQ(5,3)-graphs. We find their possible automorphisms. It turns out that the automorphism group of a distance-regular graph with intersection array {96,75,16,1;1,16,75,96} acts intransitively on the set of its antipodal classes.
Citation:
K. S. Efimov, “Automorphisms of an AT4(4,4,2)-graph and of the corresponding strongly regular graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 119–127; Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S59–S67
\Bibitem{Efi17}
\by K.~S.~Efimov
\paper Automorphisms of an $AT4(4,4,2)$-graph and of the corresponding strongly regular graphs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 4
\pages 119--127
\mathnet{http://mi.mathnet.ru/timm1472}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-4-119-127}
\elib{https://elibrary.ru/item.asp?id=30713965}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 304
\issue , suppl. 1
\pages S59--S67
\crossref{https://doi.org/10.1134/S008154381902007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521700011}
Linking options:
https://www.mathnet.ru/eng/timm1472
https://www.mathnet.ru/eng/timm/v23/i4/p119
This publication is cited in the following 1 articles:
A. A. Makhnev, D. V. Paduchikh, “Inverse Problems in the Class of Distance-Regular Graphs of Diameter 4”, Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S121–S129