Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 4, Pages 119–127
DOI: https://doi.org/10.21538/0134-4889-2017-23-4-119-127
(Mi timm1472)
 

This article is cited in 1 scientific paper (total in 1 paper)

Automorphisms of an $AT4(4,4,2)$-graph and of the corresponding strongly regular graphs

K. S. Efimovabc

a Ural Federal University, Ekaterinburg, 620002 Russia
b Ural State University of Economics, Ekaterinburg, 620144 Russia
c Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia
Full-text PDF (207 kB) Citations (1)
References:
Abstract: A.A. Makhnev, D.V. Paduchikh, and M. M. Khamgokova gave a classification of distance-regular locally\linebreak $GQ(5,3)$-graphs. In particular, there arises an $AT4(4,4,2)$-graph with intersection array $\{96,75,16,1;1,16,75,96\}$ on $644$ vertices. The same authors proved that an $AT4(4,4,2)$-graph is not a locally $GQ(5,3)$-graph. However, the existence of an $AT4(4,4,2)$-graph that is a locally pseudo $GQ(5,3)$-graph is unknown. The antipodal quotient of an $AT4(4,4,2)$-graph is a strongly regular graph with parameters $(322,96,20,32)$. These two graphs are locally pseudo $GQ(5,3)$-graphs. We find their possible automorphisms. It turns out that the automorphism group of a distance-regular graph with intersection array $\{96,75,16,1;1,16,75,96\}$ acts intransitively on the set of its antipodal classes.
Keywords: distance-regular graph, graph automorphism.
Funding agency Grant number
Russian Science Foundation 14-11-00061-П
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
Received: 01.09.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 304, Issue 1, Pages S59–S67
DOI: https://doi.org/10.1134/S008154381902007X
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05B25
Language: Russian
Citation: K. S. Efimov, “Automorphisms of an $AT4(4,4,2)$-graph and of the corresponding strongly regular graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 119–127; Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S59–S67
Citation in format AMSBIB
\Bibitem{Efi17}
\by K.~S.~Efimov
\paper Automorphisms of an $AT4(4,4,2)$-graph and of the corresponding strongly regular graphs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 4
\pages 119--127
\mathnet{http://mi.mathnet.ru/timm1472}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-4-119-127}
\elib{https://elibrary.ru/item.asp?id=30713965}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 304
\issue , suppl. 1
\pages S59--S67
\crossref{https://doi.org/10.1134/S008154381902007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521700011}
Linking options:
  • https://www.mathnet.ru/eng/timm1472
  • https://www.mathnet.ru/eng/timm/v23/i4/p119
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024