Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 4, Pages 85–97
DOI: https://doi.org/10.21538/0134-4889-2017-23-4-85-97
(Mi timm1469)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brieskorn manifolds, generated Sieradski groups, and coverings of lens space

A. Yu. Vesninab, T. A. Kozlovskayac

a Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia
b Novosibirsk State University, Novosibirsk, 630090 Russia
c Magadan Institute of Economics, Magadan, 685000 Russia
References:
Abstract: The Brieskorn manifold $\mathscr B(p,q,r)$ is the $r$-fold cyclic covering of the three-dimensional sphere $S^{3}$ branched over the torus knot $T(p,q)$. The generalised Sieradski groups $S(m,p,q)$ are groups with $m$-cyclic presentation $G_{m}(w)$, where the word $w$ has a special form depending on $p$ and $q$. In particular, $S(m,3,2)=G_{m}(w)$ is the group with $m$ generators $x_{1},\ldots,x_{m}$ and $m$ defining relations $w(x_{i}, x_{i+1}, x_{i+2})=1$, where $w(x_{i}, x_{i+1}, x_{i+2}) = x_{i} x_{i+2} x_{i+1}^{-1}$. Cyclic presentations of $S(2n,3,2)$ in the form $G_{n}(w)$ were investigated by Howie and Williams, who showed that the $n$-cyclic presentations are geometric, i.e., correspond to the spines of closed three-dimensional manifolds. We establish an analogous result for the groups $S(2n,5,2)$. It is shown that in both cases the manifolds are $n$-fold branched cyclic coverings of lens spaces. For the classification of the constructed manifolds, we use Matveev's computer program “Recognizer.”
Keywords: three-dimensional manifold, Brieskorn manifold, cyclically presented group, Sieradski group, lens space, branched covering.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-07906
Received: 07.08.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 304, Issue 1, Pages S175–S185
DOI: https://doi.org/10.1134/S0081543819020196
Bibliographic databases:
Document Type: Article
UDC: 514.132+515.162
MSC: 57M05, 20F05, 57M50
Language: Russian
Citation: A. Yu. Vesnin, T. A. Kozlovskaya, “Brieskorn manifolds, generated Sieradski groups, and coverings of lens space”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 85–97; Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S175–S185
Citation in format AMSBIB
\Bibitem{VesKoz17}
\by A.~Yu.~Vesnin, T.~A.~Kozlovskaya
\paper Brieskorn manifolds, generated Sieradski groups, and coverings of lens space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 4
\pages 85--97
\mathnet{http://mi.mathnet.ru/timm1469}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-4-85-97}
\elib{https://elibrary.ru/item.asp?id=30713962}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 304
\issue , suppl. 1
\pages S175--S185
\crossref{https://doi.org/10.1134/S0081543819020196}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521700008}
Linking options:
  • https://www.mathnet.ru/eng/timm1469
  • https://www.mathnet.ru/eng/timm/v23/i4/p85
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:305
    Full-text PDF :91
    References:36
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024