Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 4, Pages 43–51
DOI: https://doi.org/10.21538/0134-4889-2017-23-4-43-51
(Mi timm1465)
 

This article is cited in 3 scientific papers (total in 3 papers)

Knot groups and nilpotent approximability

V. G. Bardakovabc, M. V. Neshchadimab

a Sobolev Institute of Mathematics, Novosibirsk, 630090 Russian
b Novosibirsk State University, Novosibirsk, 630090 Russian
c Novosibirsk State Agrarian University, Novosibirsk, 630039 Russian
Full-text PDF (197 kB) Citations (3)
References:
Abstract: We study groups of classical links, welded links, and virtual links. For classical braids, it is proved that a braid and its automorphic image are weakly equivalent. This implies the affirmative answer to the question of the coincidence of the groups constructed from a braid and from its automorphic image. We also study the problem of approximability of groups of virtual knots by nilpotent groups. It is known that in a classical knot group the commutator subgroup coincides with the third term of the lower central series, and hence the factorization by the terms of the lower central series yields nothing. We prove that the situation is different for virtual knots. A nontrivial homomorphism of the virtual trefoil group to a nilpotent group of class 4 is constructed. We use the Magnus representation of a free group by power series to construct a homomorphism of the virtual trefoil group to a finite-dimensional algebra. This produces the nontrivial linear representation of the virtual trefoil group by unitriangular matrices of order 8.
Keywords: virtual knots, links, groups.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00414
Received: 15.06.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 304, Issue 1, Pages S23–S30
DOI: https://doi.org/10.1134/S0081543819020044
Bibliographic databases:
Document Type: Article
UDC: 512.7
MSC: 57M25, 57M27, 20F14
Language: Russian
Citation: V. G. Bardakov, M. V. Neshchadim, “Knot groups and nilpotent approximability”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 43–51; Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S23–S30
Citation in format AMSBIB
\Bibitem{BarNes17}
\by V.~G.~Bardakov, M.~V.~Neshchadim
\paper Knot groups and nilpotent approximability
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 4
\pages 43--51
\mathnet{http://mi.mathnet.ru/timm1465}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-4-43-51}
\elib{https://elibrary.ru/item.asp?id=30713958}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 304
\issue , suppl. 1
\pages S23--S30
\crossref{https://doi.org/10.1134/S0081543819020044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521700004}
Linking options:
  • https://www.mathnet.ru/eng/timm1465
  • https://www.mathnet.ru/eng/timm/v23/i4/p43
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :77
    References:44
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024