Abstract:
The motion, in a resistant medium, of a system consisting of a rigid body and movable internal mass is considered. The external medium acts on the body by a force that piecewise linearly depends on its speed. The class of periodic motions of the internal mass for which the speed of this mass relative to the body is piecewise constant is studied. It is shown that, under certain conditions, the forward movement of the whole system in the medium is possible. The average speed of this movement over a period is determined. Optimal parameters of the motion of the internal mass for which the average speed of the system movement is maximal are found.
Citation:
F. L. Chernous'ko, “Optimization of the motion in a resistant medium of a body with a movable internal mass”, Dynamical systems: modeling, optimization, and control, Trudy Inst. Mat. i Mekh. UrO RAN, 12, no. 1, 2006, 242–248; Proc. Steklov Inst. Math. (Suppl.), 253, suppl. 1 (2006), S76–S82
\Bibitem{Che06}
\by F.~L.~Chernous'ko
\paper Optimization of the motion in a~resistant medium of a~body with a~movable internal mass
\inbook Dynamical systems: modeling, optimization, and control
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2006
\vol 12
\issue 1
\pages 242--248
\mathnet{http://mi.mathnet.ru/timm146}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2246987}
\zmath{https://zbmath.org/?q=an:1121.93054}
\elib{https://elibrary.ru/item.asp?id=12040731}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2006
\vol 253
\issue , suppl. 1
\pages S76--S82
\crossref{https://doi.org/10.1134/S0081543806050063}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746864936}
Linking options:
https://www.mathnet.ru/eng/timm146
https://www.mathnet.ru/eng/timm/v12/i1/p242
This publication is cited in the following 4 articles:
Podosinnikova A.A., “Optimal Control of Dual-MASS System Motion in a Medium with a Piecewise Linear Resistance”, J. Comput. Syst. Sci. Int., 51:6 (2012), 849–858
Volkova L.Yu., Yatsun S.F., “Simulation of the Plane Controlled Motion of a Three-MASS Vibration System”, J. Comput. Syst. Sci. Int., 51:6 (2012), 859–878
Yatsun S.F., Volkova L.Yu., “Modelirovanie dinamicheskikh rezhimov vibratsionnogo robota, peremeschayuschegosya po poverkhnosti s vyazkim soprotivleniem”, Spetstekhnika i svyaz, 2012, no. 3, 25–29
Erik I. Verriest, “LOCOMOTION OF FRICTION COUPLED SYSTEMS”, IFAC Proceedings Volumes, 40:14 (2007), 202