Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 3, Pages 257–271
DOI: https://doi.org/10.21538/0134-4889-2017-23-3-257-271
(Mi timm1456)
 

On multiply monotone functions.

R. M. Trigub

Sumy State University
References:
Abstract: The subject and the method of this paper belong to classical analysis. The Wiener Banach algebra (the normed ring) $A(\mathbb{R}^d)$, $d\in\mathbb N$, is the space of Fourier transforms of functions from $L_1(\mathbb{R}^d)$ (with pointwise product). The membership in this algebra is essential for Fourier multipliers from $L_1$ to $L_1$ and principal for the convergence on the space $L_1$ of summation methods for Fourier series and integrals given by one factor function. A function $f$ is called $m$-multiply monotone on $\mathbb{R}_+=(0,+\infty)$ if $(-1)^{\nu}f^{(\nu)}(t)\ge 0$ for $t\in \mathbb{R}_+$ and $0\le\nu\le m+1$. For such functions, Shoenberg's integral presentation has long been known, which becomes Bernstein's formula for monotone functions as $m\to \infty$. Denote by $V_0(\mathbb{R}_+)$ the set of functions of bounded variation on $\mathbb{R}_+$, i.e., the set of functions representable as the difference of two bounded monotone functions. Denote by $V_m(\mathbb{R}_+)$, $m\in\mathbb N$, the space of functions $f$ from $V_{0,\mathrm{loc}}(\mathbb{R}_+)$ such that $\|f\|_{V_m}=\sup_{t\in \mathbb{R}_+}|f(t)|+\int_0^\infty t^m|df^{(m)}(t)|<\infty$. This is a Banach algebra. A function $f$ belongs to $V_m(\mathbb{R}_+)$ if and only if $f$ can be represented as the difference of two bounded functions with convex derivatives of order $m-1$ (Theorem 1). We also study conditions under which functions of the form $f_0(|x|_{p,d})$, where $|x|_{p,d}=\big(\sum_{j=1}^d |x_j|^p\big)^{1/p}$, $x=(x_1,\ldots,x_d)$, for $p\in (0,\infty)$ and $|x|_\infty=\max\limits_{1\le j\le d}|x_j|$, belong to $A(\mathbb{R}^d)$. The case $p=2$ (radial functions) is well studied, including the Pólya–Askey criterion of the positive definiteness of functions on $\mathbb {R}^d$. We prove Theorem 2, which has the following corollaries. (1) If $f_0\in C_0[0,\infty)$ and $f_0\in V_d(\mathbb{R}_+)$, then $f_0(|x|_{p,d})\in A(\mathbb{R}^d)$ for $p\in [1,\infty]$. (2) If $f_0\in C_0[0,\infty)$ and $f_0\in V_{d+1}(\mathbb{R}_+)$, then $f_0(|x|_{p,d})\in A(\mathbb{R}^d)$ for $p\in (0,1)$. We give some examples, including an example with an oscillating function.
Keywords: function of bounded variation, convex function, multiply monotone function, completely monotone function, positive definite function, Fourier transform.
Received: 13.04.2017
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: R. M. Trigub, “On multiply monotone functions.”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 3, 2017, 257–271
Citation in format AMSBIB
\Bibitem{Tri17}
\by R.~M.~Trigub
\paper On multiply monotone functions.
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 3
\pages 257--271
\mathnet{http://mi.mathnet.ru/timm1456}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-3-257-271}
\elib{https://elibrary.ru/item.asp?id=29938018}
Linking options:
  • https://www.mathnet.ru/eng/timm1456
  • https://www.mathnet.ru/eng/timm/v23/i3/p257
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025