Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 3, Pages 253–256
DOI: https://doi.org/10.21538/0134-4889-2017-23-3-253-256
(Mi timm1455)
 

Uniform approximation of the curvature of smooth planar curves with the use of partial sums of Fourier series

Yu. N. Subbotin, N. I. Chernykh

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: An error bound for the approximation of the curvature of graphs of periodic functions from the class $W^r$ for $r\ge 3$ in the uniform metric is obtained with the use of the simplest approximation technique for smooth periodic functions, which is approximation by partial sums of their trigonometric Fourier series. From the mathematical point of view, the interest in this problem is connected with the specific nonlinearity of the graph curvature operator on the class of smooth functions $W^r$ on a period or a closed interval for $r\ge 2$. There are several papers on curvature approximation for planar curves in the mean-square and Chebyshev norms. In previous works, the approximation was performed by partial sums of trigonometric series (in the $L^2$ norm), interpolation splines with uniform knots, Fejér means of partial sums of trigonometric series, and orthogonal interpolating wavelets based on Meyer wavelets (in the $C^{\infty}$ norm). The technique of this paper, based on the lemma, can possibly be generalized to the $L^p$ metric and other approximation methods.
Keywords: curvature approximation, planar curves from the class $W^r$, uniform metric.
Funding agency Grant number
Russian Science Foundation 14-11-00702
Received: 01.06.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 303, Issue 1, Pages S213–S215
DOI: https://doi.org/10.1134/S0081543818090225
Bibliographic databases:
Document Type: Article
UDC: 517.518.834
MSC: 42A10
Language: Russian
Citation: Yu. N. Subbotin, N. I. Chernykh, “Uniform approximation of the curvature of smooth planar curves with the use of partial sums of Fourier series”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 3, 2017, 253–256; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), S213–S215
Citation in format AMSBIB
\Bibitem{SubChe17}
\by Yu.~N.~Subbotin, N.~I.~Chernykh
\paper Uniform approximation of the curvature of smooth planar curves with the use of partial sums of Fourier series
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 3
\pages 253--256
\mathnet{http://mi.mathnet.ru/timm1455}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-3-253-256}
\elib{https://elibrary.ru/item.asp?id=29938017}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 303
\issue , suppl. 1
\pages S213--S215
\crossref{https://doi.org/10.1134/S0081543818090225}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521100023}
Linking options:
  • https://www.mathnet.ru/eng/timm1455
  • https://www.mathnet.ru/eng/timm/v23/i3/p253
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025