Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 3, Pages 224–233
DOI: https://doi.org/10.21538/0134-4889-2017-23-3-224-233
(Mi timm1452)
 

This article is cited in 3 scientific papers (total in 3 papers)

Convergence bounds for splines for three-point rational interpolants of continuous and continuously differentiable functions

A.-R. K. Ramazanovab, V. G. Magomedovaa

a Daghestan State University, Makhachkala
b Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
Full-text PDF (199 kB) Citations (3)
References:
Abstract: For functions $f(x)$ continuous on an interval $[a,b]$ and grids of pairwise different nodes $\Delta\colon a=x_0<x_1<\dots<x_N=b$ $(N\geqslant 2)$, we study the convergence rate of piecewise rational functions $R_{N,1} (x)=R_{N,1}(x,f)$ such that, for $x\in [x_{i-1}, x_i]$ ($i=1,2,\dots,N$), we have $R_{N,1}(x)=(R_i(x)(x-x_{i-1})+R_{i-1}(x)(x_i-x))/(x_i-x_{i-1})$, where $R_i(x)=\alpha_i+\beta_i(x-x_i)+\gamma_i/(x-g_i)$ ($i=1,2,\dots,N-1$); the coefficients $\alpha_i$, $\beta_i$, and $\gamma_i$ are defined by the conditions $R_i(x_j)=f(x_j)$ for $j=i-1,i,i+1$; and the poles $g_i$ are defined by the nodes. It is assumed that $R_0(x)\equiv R_1(x)$ and $R_N(x)\equiv R_{N-1} (x)$. Bounds for the convergence rate of $R_{N,1} (x,f)$ are found in terms of certain structural characteristics of the function:
(1) the third-order modulus of continuity in the case of uniform grids;
(2) the variation and the modulus of change of the first and second derivatives in the case of continuously differentiable functions $f(x)$; here, the bounds in terms of the variation have the order of the best polynomial spline approximations.
Keywords: splines, interpolation splines, rational splines.
Received: 17.04.2017
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 97N50
Language: Russian
Citation: A.-R. K. Ramazanov, V. G. Magomedova, “Convergence bounds for splines for three-point rational interpolants of continuous and continuously differentiable functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 3, 2017, 224–233
Citation in format AMSBIB
\Bibitem{RamMag17}
\by A.-R.~K.~Ramazanov, V.~G.~Magomedova
\paper Convergence bounds for splines for three-point rational interpolants of continuous and continuously differentiable functions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 3
\pages 224--233
\mathnet{http://mi.mathnet.ru/timm1452}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-3-224-233}
\elib{https://elibrary.ru/item.asp?id=29938014}
Linking options:
  • https://www.mathnet.ru/eng/timm1452
  • https://www.mathnet.ru/eng/timm/v23/i3/p224
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025