Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 3, Pages 206–213
DOI: https://doi.org/10.21538/0134-4889-2017-23-3-206-213
(Mi timm1450)
 

This article is cited in 1 scientific paper (total in 1 paper)

Uniform approximation by perfect splines

A. V. Mironenko

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (194 kB) Citations (1)
References:
Abstract: The problem of uniform approximation of a continuous function on a closed interval is considered. In the case of approximation by the class $W^{(n)}$ of functions whose $n$th derivative is bounded by 1 almost everywhere, a criterion for a best approximation element is known. This criterion, in particular, requires that the approximating function coincide on some subinterval with a perfect spline of degree $n$ with finitely many knots. Since perfect splines belong to the class $W^{(n)}$, we study the following restriction of the problem: a continuous function is approximated by the set of perfect splines with an arbitrary finite number of knots. We establish the existence of a perfect spline that is a best approximation element both in $W^{(n)}$ and in this set. This means that the values of best approximation in the problems are equal. We also show that the best approximation elements in this set satisfy a criterion similar to the criterion of best approximation in $W^{(n)}$. The set of perfect splines is shown to be everywhere dense in $W^{(n)}$.
Keywords: uniform approximation, functions with bounded derivative, perfect splines.
Received: 10.05.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 303, Issue 1, Pages 175–182
DOI: https://doi.org/10.1134/S0081543818090183
Bibliographic databases:
Document Type: Article
UDC: 517.518
MSC: 41A15, 41A30
Language: Russian
Citation: A. V. Mironenko, “Uniform approximation by perfect splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 3, 2017, 206–213; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 175–182
Citation in format AMSBIB
\Bibitem{Mir17}
\by A.~V.~Mironenko
\paper Uniform approximation by perfect splines
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 3
\pages 206--213
\mathnet{http://mi.mathnet.ru/timm1450}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-3-206-213}
\elib{https://elibrary.ru/item.asp?id=28409379}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 303
\issue , suppl. 1
\pages 175--182
\crossref{https://doi.org/10.1134/S0081543818090183}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521100018}
Linking options:
  • https://www.mathnet.ru/eng/timm1450
  • https://www.mathnet.ru/eng/timm/v23/i3/p206
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025