Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 3, Pages 125–133
DOI: https://doi.org/10.21538/0134-4889-2017-23-3-125-133
(Mi timm1443)
 

Power wight integrability for sums of moduli of blocks from trigonometric series

V. P. Zastavnyi, A. S. Levadnaya

Donetsk National University
References:
Abstract: The following problem is studied: find conditions on sequences $\{\gamma(r)\}$, $\{n_j\}$, and $\{v_j\}$ under which, for any sequence $\{b_k\}$ such that $\sum_{k=r}^{\infty}|b_k-b_{k+1}|\leq\gamma(r)$, $b_k\to 0$, the integral $\int_0^\pi U^p(x)/{x^q}dx$ is convergent, where $p>0$, $q\in[1-p;1)$, and $U(x):=\sum_{j=1}^{\infty}\left|\sum_{k=n_j}^{v_j}b_k \sin kx\right|$. In the case $\gamma(r)={B}/{r}$, $B>0$, this problem was studied and solved by S. A. Telyakovskii. In the case where $p\ge 1$, $q=0$, $v_j=n_{j+1}-1$, and the sequence $\{b_k\}$ is monotone, A. S. Belov obtained a criterion for the belonging of the function $U(x)$ to the space $L_p$. In Theorem 1 of the present paper, we give sufficient conditions for the convergence of the above integral, which for $\gamma(r)= B/{r}$, $B>0$, coincide with Telyakovskii's sufficient conditions. In the case $\gamma(r)= O(1/{r})$, Telyakovskii's conditions may be violated, but the application of Theorem 1 guarantees the convergence of the integral. The corresponding examples are given in the last section of the paper. The question on necessary conditions for the convergence of the integral $\int_0^\pi U^p(x)/{x^q}dx$, where $p>0$ and $q\in[1-p;1)$, remains open.
Keywords: trigonometric series, sums of moduli of blocks, power weight.
Received: 15.05.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 303, Issue 1, Pages S223–S230
DOI: https://doi.org/10.1134/S0081543818090249
Bibliographic databases:
Document Type: Article
UDC: 517.518.45
MSC: 42A32
Language: Russian
Citation: V. P. Zastavnyi, A. S. Levadnaya, “Power wight integrability for sums of moduli of blocks from trigonometric series”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 3, 2017, 125–133; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), S223–S230
Citation in format AMSBIB
\Bibitem{ZasLev17}
\by V.~P.~Zastavnyi, A.~S.~Levadnaya
\paper Power wight integrability for sums of moduli of blocks from trigonometric series
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 3
\pages 125--133
\mathnet{http://mi.mathnet.ru/timm1443}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-3-125-133}
\elib{https://elibrary.ru/item.asp?id=29938005}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 303
\issue , suppl. 1
\pages S223--S230
\crossref{https://doi.org/10.1134/S0081543818090249}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521100011}
Linking options:
  • https://www.mathnet.ru/eng/timm1443
  • https://www.mathnet.ru/eng/timm/v23/i3/p125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :71
    References:57
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024