Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 3, Pages 22–32
DOI: https://doi.org/10.21538/0134-4889-2017-23-3-22-32
(Mi timm1434)
 

This article is cited in 5 scientific papers (total in 5 papers)

Three extremal problems in the Hardy and Bergman spaces of functions analytic in a disk

R. R. Akopyanab, M. S. Saidusajnovc

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
c Tajik National University, Dushanbe
Full-text PDF (233 kB) Citations (5)
References:
Abstract: Let a nonnegative measurable function $\gamma(\rho)$ be nonzero almost everywhere on $(0,1)$, and let the product $\rho\gamma(\rho)$ be summable on $(0,1)$. Denote by $\mathcal{B}=B^{p,q}_{\gamma}$, $1\leq p\le \infty$, $1\leq q < \infty$, the space of functions $f$ analytic in the unit disk for which the function $M_p^q(f,\rho)\rho\gamma(\rho)$ is summable on $(0,1)$, where $M_p^q(f,\rho)$ is the $p$-mean of $f$ on the circle of radius $\rho$; this space is equipped with the norm
$$ \|f\|_{B^{p,q}_{\gamma}}=\|M_p(f,\cdot)\|_{L^q_{\rho\gamma(\rho)}(0,1)}. $$
In the case $q=\infty$, the space $\mathcal{B}=B^{p,\infty}_{\gamma}$ is identified with the Hardy space $H^p$. Using an operator $L$ given by the equality $Lf(z)=\sum_{k=0}^\infty l_k c_k z^k$ on functions $f(z)=\sum_{k=0}^\infty c_k z^k$ analytic in the unit disk, we define the class
$$ LB_\gamma^{p,q}(N):=\{f\colon \|Lf\|_{B_\gamma^{p,q}}\le N\},\quad N>0. $$
For a pair of such operators $L$ and $G$, under some constraints, the following three extremal problems are solved. (1) The best approximation of the class $LB_\gamma^{p_1,q_1}(1)$ by the class $GB_\gamma^{p_3,q_3}(N)$ in the norm of the space $B_\gamma^{p_2,q_2}$ is found for $2\le p_{1}\le\infty$, $1\leq p_{2}\leq 2$, $1\leq p_{3}\leq 2$, $1\le q_1=q_2=q_3\le\infty$, and $q_s=2$ or $\infty$. (2) The best approximation of the operator $L$ by the set $\mathcal{L}(N)$, $N>0$, of linear bounded operators from $B_\gamma^{p_1,q_1}$ to $B_\gamma^{p_2,q_2}$ with the norm not exceeding $N$ on the class $GB_\gamma^{p_3,q_3}(1)$ is found for $2\le p_{1}\le\infty$, $1\leq p_{2}\leq 2$, $2\leq p_{3}\leq \infty$, $1\le q_1=q_2=q_3\le\infty$, and $q_s=2$ or $\infty$. (3) Bounds for the modulus of continuity of the operator $L$ on the class $GB_\gamma^{p_3,q_3}(1)$ are obtained, and the exact value of the modulus is found in the Hilbert case.
Keywords: Hardy and Bergman spaces, best approximation of a class by a class, best approximation of an unbounded operator by bounded operators, modulus of continuity of an operator.
Received: 15.05.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 303, Issue 1, Pages 25–35
DOI: https://doi.org/10.1134/S0081543818090031
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 30E10, 47A58
Language: Russian
Citation: R. R. Akopyan, M. S. Saidusajnov, “Three extremal problems in the Hardy and Bergman spaces of functions analytic in a disk”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 3, 2017, 22–32; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 25–35
Citation in format AMSBIB
\Bibitem{AkoSai17}
\by R.~R.~Akopyan, M.~S.~Saidusajnov
\paper Three extremal problems in the Hardy and Bergman spaces of functions analytic in a disk
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 3
\pages 22--32
\mathnet{http://mi.mathnet.ru/timm1434}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-3-22-32}
\elib{https://elibrary.ru/item.asp?id=29295247}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 303
\issue , suppl. 1
\pages 25--35
\crossref{https://doi.org/10.1134/S0081543818090031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521100002}
Linking options:
  • https://www.mathnet.ru/eng/timm1434
  • https://www.mathnet.ru/eng/timm/v23/i3/p22
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :74
    References:45
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024