Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 2, Pages 285–302
DOI: https://doi.org/10.21538/0134-4889-2017-23-2-285-302
(Mi timm1430)
 

This article is cited in 11 scientific papers (total in 11 papers)

Stability iterations and an evasion problem with a constraint on the number of switchings

A. G. Chentsovab

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: For an approach-evasion differential game, we consider a variant of the method of program iterations called stability iterations. A connection is established between the iterative procedure and the solution of an evasion problem with a constraint on the number of switchings: the stability iterations define the successful solvability set of the problem. It is proved that the evasion is possible if and only if the strict evasion is possible (i.e., the evasion with respect to neighborhoods of sets defining the approach-evasion game). We specify a representation of the strategies that guarantee the evasion with a constraint on the number of switchings. These strategies are defined as triplets whose elements are a multidimensional positional control strategy, a correction strategy realized as a mapping that takes a game position to a nonanticipating multifunctional on the trajectory space and defines the choice of the switching times, and a positive integer that satisfies the constraints on the number of switchings and specifies the number of switchings of the control. It is important that we use nonanticipating multifunctionals as a tool for generating the controls of the evading player. The paper is in line with the research carried out by N.N.Krasovskii's school on control theory and the theory of differential games.
Keywords: nonanticipating multifunctional, stability operator, correction strategy.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00505
16-01-00649
Received: 21.12.2016
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: A. G. Chentsov, “Stability iterations and an evasion problem with a constraint on the number of switchings”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 2, 2017, 285–302
Citation in format AMSBIB
\Bibitem{Che17}
\by A.~G.~Chentsov
\paper Stability iterations and an evasion problem with a constraint on the number of switchings
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 2
\pages 285--302
\mathnet{http://mi.mathnet.ru/timm1430}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-2-285-302}
\elib{https://elibrary.ru/item.asp?id=29295271}
Linking options:
  • https://www.mathnet.ru/eng/timm1430
  • https://www.mathnet.ru/eng/timm/v23/i2/p285
  • This publication is cited in the following 11 articles:
    1. A. G. Chentsov, “On the Relaxation of a Game Problem of Approach with Priority Elements”, Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S55–S70  mathnet  crossref  crossref  isi  elib
    2. A. G. Chentsov, “Guidance–Evasion Differential Game: Alternative Solvability and Relaxations of the Guidance Problem”, Proc. Steklov Inst. Math., 315 (2021), 270–289  mathnet  crossref  crossref  isi
    3. A. G. Chentsov, “O svoistvakh odnogo funktsionala, ispolzuemogo v programmnykh konstruktsiyakh resheniya differentsialnykh igr”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:4 (2021), 668–696  mathnet  crossref
    4. A. G. Chentsov, “Differential approach-evasion game: alternative solvability and the construction of relaxations”, Differ. Equ., 57:8 (2021), 1088–1114  crossref  mathscinet  isi  scopus
    5. A. G. Chentsov, D. M. Khachai, “Operator programmnogo pogloscheniya i relaksatsiya differentsialnoi igry sblizheniya–ukloneniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:1 (2020), 64–91  mathnet  crossref
    6. A. G. Chentsov, “Nekotorye voprosy teorii differentsialnykh igr s fazovymi ogranicheniyami”, Izv. IMI UdGU, 56 (2020), 138–184  mathnet  crossref
    7. A. G. Chentsov, D. M. Khachay, “Relaxation of a dynamic game of guidance and program constructions of control”, Minimax Theory Appl., 5:2, SI (2020), 275–304  mathscinet  zmath  isi
    8. A. Chentsov, D. Khachay, “Towards a relaxation of the pursuit-evasion differential game”, IFAC PAPERSONLINE, 52:13 (2019), 2303–2307  crossref  isi  scopus
    9. Alexander Chentsov, Daniel Khachay, Studies in Systems, Decision and Control, 203, Advanced Control Techniques in Complex Engineering Systems: Theory and Applications, 2019, 129  crossref
    10. A. G. Chentsov, D. M. Khachai, “Relaxation of the Pursuit–Evasion Differential Game and Iterative Methods”, Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S35–S57  mathnet  crossref  crossref  isi  elib
    11. A. G. Chentsov, “Iteratsii stabilnosti i zadacha ukloneniya s ogranicheniem na chislo pereklyuchenii formiruemogo upravleniya”, Izv. IMI UdGU, 49 (2017), 17–54  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:373
    Full-text PDF :79
    References:88
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025