Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 2, Pages 250–265
DOI: https://doi.org/10.21538/0134-4889-2017-23-2-250-265
(Mi timm1427)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotics of a solution of a three-dimensional nonlinear wave equation near a butterfly catastrophe point

O. Yu. Khachay

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (428 kB) Citations (1)
References:
Abstract: In the framework of the method of matched asymptotic expansions, a solution of the three-dimensional nonlinear wave equation $-U''_{TT}+U''_{XX}+U''_{YY}+U''_{ZZ}=f({\varepsilon} T, {\varepsilon} X,{\varepsilon} Y,{\varepsilon} Z,U)$ is considered. Here $\varepsilon$ is a small positive parameter and the right-hand side is a smoothly changing source term of the equation. A formal asymptotic expansion of the solution of the equation is constructed in terms of the inner scale near a typical “butterfly” catastrophe point. It is assumed that there exists a standard outer asymptotic expansion of this solution suitable outside a small neighborhood of the catastrophe point. We study a nonlinear second-order ordinary differential equation (ODE) for the leading term of the inner asymptotic expansion depending on three parameters: $u''_{xx}=u^5-t u^3-z u^2-y u-x$. This equation describes the appearance of a step-like contrast structure near the catastrophe point. We briefly describe the procedure for deriving this ODE. For a bounded set of values of the parameters, we obtain a uniform asymptotics at infinity of a solution of the ODE that satisfies the matching conditions. We use numerical methods to show the possibility of locating a shock layer outside a neighborhood of zero in the inner scale. The integral curves found numerically are presented.
Keywords: matched asymptotic expansions, nonlinear ordinary differential equation, nonlinear equation of mathematical physics, butterfly catastrophe, numerical methods.
Funding agency Grant number
Russian Foundation for Basic Research 16-31-00222
Received: 21.02.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 301, Issue 1, Pages 72–87
DOI: https://doi.org/10.1134/S0081543818050061
Bibliographic databases:
Document Type: Article
UDC: 517.928.4
MSC: 34E05, 35C20, 34K28
Language: Russian
Citation: O. Yu. Khachay, “Asymptotics of a solution of a three-dimensional nonlinear wave equation near a butterfly catastrophe point”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 2, 2017, 250–265; Proc. Steklov Inst. Math. (Suppl.), 301, suppl. 1 (2018), 72–87
Citation in format AMSBIB
\Bibitem{Kha17}
\by O.~Yu.~Khachay
\paper Asymptotics of a solution of a three-dimensional nonlinear wave equation near a butterfly catastrophe point
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 2
\pages 250--265
\mathnet{http://mi.mathnet.ru/timm1427}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-2-250-265}
\elib{https://elibrary.ru/item.asp?id=29295267}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 301
\issue , suppl. 1
\pages 72--87
\crossref{https://doi.org/10.1134/S0081543818050061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453520800021}
Linking options:
  • https://www.mathnet.ru/eng/timm1427
  • https://www.mathnet.ru/eng/timm/v23/i2/p250
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :83
    References:66
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025