Abstract:
It is known that an n-dimensional geometry of maximum mobility admits a group of motions of dimension n(n+1)/2. Many of these geometries are well-known, for example, the Euclidean and pseudo-Euclidean geometries. Such geometries are phenomenologically symmetric; i.e., their metric properties are equivalent to their group properties. In this paper we consider the examples of the two-dimensional Euclidean and pseudo-Euclidean geometries to develop an analytical method for their embedding. More exactly, we search for all possible functions of the form f=f((xi−xj)2±(yi−yj)2,zi,zj), where, for example, xi,yi,zi are the coordinates of a point i. It turns out that there exist only the following embeddings: f=(xi−xj)2±(yi−yj)2+(zi−zj)2 and f=[(xi−xj)2±(yi−yj)2]exp(2zi+2zj). Note that we obtain not only the well-known three-dimensional geometries (Euclidean and pseudo-Euclidean) but also less known geometries (three-dimensional special extensions of the two-dimensional Euclidean and pseudo-Euclidean geometries). It is found that all these geometries admit six-dimensional groups of motions. To solve the formulated problem, according to the condition of local invariance of the metric function, we write the functional equation 2[(xi−xj)(X1(i)−X1(j))+ϵ(yi−yj)(X2(i)−X2(j))]∂f∂θ+X3(i)∂f∂zi+X3(j)∂f∂zj=0, where all the components are analytic functions. This equation is expanded in a Taylor series and the coefficients of the expansion at identical products of powers of the variables are compared. This task is greatly simplified by using the Maple 15 computing environment. The obtained results are used to write differential equations, which are then integrated to find solutions to the embedding problem formulated earlier.
Citation:
V. A. Kyrov, G. G. Mikhailichenko, “An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 2, 2017, 167–181
\Bibitem{KyrMik17}
\by V.~A.~Kyrov, G.~G.~Mikhailichenko
\paper An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 2
\pages 167--181
\mathnet{http://mi.mathnet.ru/timm1419}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-2-167-181}
\elib{https://elibrary.ru/item.asp?id=29295259}
Linking options:
https://www.mathnet.ru/eng/timm1419
https://www.mathnet.ru/eng/timm/v23/i2/p167
This publication is cited in the following 12 articles:
V. A. Kyrov, “Analiticheskoe vlozhenie dlya geometrii postoyannoi krivizny”, Chebyshevskii sb., 23:3 (2022), 133–146
V. A. Kyrov, “Reshenie zadachi vlozheniya dlya dvumernykh i trekhmernykh geometrii lokalnoi maksimalnoi podvizhnosti”, Materialy Voronezhskoi vesennei matematicheskoi shkoly
«Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 5, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 194, VINITI RAN, M., 2021, 124–143
V. A. Kyrov, “The Analytic Embedding of Geometries with Scalar
Product”, Sib. Adv. Math., 31:1 (2021), 27
V. A. Kyrov, “Analiticheskoe vlozhenie geometrii so skalyarnym proizvedeniem”, Matem. tr., 23:1 (2020), 150–168
V. A. Kyrov, “Analiticheskoe vlozhenie geometrii postoyannoi krivizny na psevdosfere”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 19:3 (2019), 246–257
V. A. Kyrov, “Analytic Embedding of Some Two-Dimensional Geometries of Maximal Mobility”, Sib. Electron. Math. Rep., 16 (2019), 916–937
R. A. Bogdanova, G. G. Mikhailichenko, “Derivation of an equation of phenomenological symmetry for some three-dimensional geometries”, Russian Math. (Iz. VUZ), 62:9 (2018), 7–16
V. A. Kyrov, R. A. Bogdanova, “The groups of motions of some three-dimensional maximal mobility geometries”, Siberian Math. J., 59:2 (2018), 323–331
V. A. Kyrov, G. G. Mikhailichenko, “Vlozhenie additivnoi dvumetricheskoi fenomenologicheski simmetrichnoi geometrii dvukh mnozhestv ranga (2,2) v dvumetricheskie fenomenologicheski simmetrichnye geometrii dvukh mnozhestv ranga (3,2)”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:3 (2018), 305–327
V. A. Kyrov, “Vlozhenie mnogomernykh osobykh rasshirenii psevdoevklidovykh geometrii”, Chelyab. fiz.-matem. zhurn., 3:4 (2018), 408–420
V. A. Kyrov, “Ob odnom semeistve funktsionalnykh uravnenii”, Vladikavk. matem. zhurn., 20:3 (2018), 69–77
V. A. Kyrov, “The analytical method for embedding multidimensional pseudo-Euclidean geometries”, Sib. Electron. Math. Rep., 15 (2018), 741–758