Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 2, Pages 117–132
DOI: https://doi.org/10.21538/0134-4889-2017-23-2-117-132
(Mi timm1416)
 

Autoresonance in a model of a terahertz wave generator

O. M. Kiselev, V. Yu. Novokshenov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa
References:
Abstract: We study a model of an electromagnetic wave generator based on a system of coupled Josephson junctions. The model is a chain of coupled sine-Gordon equations for the phases of the electric field in the junctions under dissipation and constant pumping. We find conditions for a resonant field excitation under various parameters of the system. It turns out that the chain of sine-Gordon equations evokes an autoresonance with a certain dependence of the frequency on the magnitude of the Josephson pumping current. We construct an asymptotic expansion for a solution of the chain under a large resonant frequency. The leading terms of the expansion for the phases of the electric field are linear in time, which is typical of an autoresonance in a system of coupled oscillators. The key role here is played by the main resonance equation, which defines the mode of the resonant excitation of the chain. This equation is the equation of a mathematical pendulum with periodically changing mass. A class of solutions of this equation is studied in detail, and classes of separatrix solutions corresponding to the zero velocity of the pendulum are described. It is proved that there exists a separatrix $\pi$-kink type solution on which the autoresonance mode is realized in the original chain of sine-Gordon equations.
Keywords: terahertz band of electromagnetic waves, Josephson junction, sine-Gordon system, kink solution, autoresonance, main resonance equation, asymptotic expansions.
Funding agency Grant number
Russian Science Foundation 17-11-01004
Received: 05.12.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 301, Issue 1, Pages 88–102
DOI: https://doi.org/10.1134/S0081543818050073
Bibliographic databases:
Document Type: Article
UDC: 517.928, 517.937, 517.958
MSC: 78M35
Language: Russian
Citation: O. M. Kiselev, V. Yu. Novokshenov, “Autoresonance in a model of a terahertz wave generator”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 2, 2017, 117–132; Proc. Steklov Inst. Math. (Suppl.), 301, suppl. 1 (2018), 88–102
Citation in format AMSBIB
\Bibitem{KisNov17}
\by O.~M.~Kiselev, V.~Yu.~Novokshenov
\paper Autoresonance in a model of a terahertz wave generator
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 2
\pages 117--132
\mathnet{http://mi.mathnet.ru/timm1416}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-2-117-132}
\elib{https://elibrary.ru/item.asp?id=29295255}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 301
\issue , suppl. 1
\pages 88--102
\crossref{https://doi.org/10.1134/S0081543818050073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453520800010}
Linking options:
  • https://www.mathnet.ru/eng/timm1416
  • https://www.mathnet.ru/eng/timm/v23/i2/p117
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :56
    References:64
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024