Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 1, Pages 275–292
DOI: https://doi.org/10.21538/0134-4889-2017-23-1-275-292
(Mi timm1402)
 

This article is cited in 5 scientific papers (total in 5 papers)

A discrete-continuous routing problem with precedence conditions

A. G. Chentsovab, A. A. Chentsova

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (642 kB) Citations (5)
References:
Abstract: We consider the problem of visiting closed sets in a compact metric space complicated by constraints in the form of precedence conditions and a possible dependence of the cost function on a list of tasks. We study a variant of the approximate realization of the extremum by applying models that involve problems of sequential visits to megalopolises (nonempty finite sets). This variant is naturally embedded into a more general construction that implements sequential visits to nonempty closed sets (NCSs) from a finite system in a metrizable compactum. The space of NCSs is equipped with the Hausdorff metric, which is used to estimate (under the corresponding condition that the sections of the cost functions are continuous) the proximity of the extrema in the problem of sequential visits for any two systems of NCSs (it is assumed that the numbers or NCSs in the systems are the same). The constraints in the form of precedence conditions are preserved.
Keywords: route, path, precedence conditions.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-07909
16-01-00505
16-01-00649
Ural Branch of the Russian Academy of Sciences 15-16-1-8
Received: 21.06.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 300, Issue 1, Pages 56–71
DOI: https://doi.org/10.1134/S0081543818020074
Bibliographic databases:
Document Type: Article
UDC: 519.6
MSC: 49L20, 90C39
Language: Russian
Citation: A. G. Chentsov, A. A. Chentsov, “A discrete-continuous routing problem with precedence conditions”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 1, 2017, 275–292; Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 56–71
Citation in format AMSBIB
\Bibitem{CheChe17}
\by A.~G.~Chentsov, A.~A.~Chentsov
\paper A discrete-continuous routing problem with precedence conditions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 1
\pages 275--292
\mathnet{http://mi.mathnet.ru/timm1402}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-1-275-292}
\elib{https://elibrary.ru/item.asp?id=28409386}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 300
\issue , suppl. 1
\pages 56--71
\crossref{https://doi.org/10.1134/S0081543818020074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000433518400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047526714}
Linking options:
  • https://www.mathnet.ru/eng/timm1402
  • https://www.mathnet.ru/eng/timm/v23/i1/p275
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:370
    Full-text PDF :68
    References:66
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024