Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 1, Pages 143–157
DOI: https://doi.org/10.21538/0134-4889-2017-23-1-143-157
(Mi timm1390)
 

This article is cited in 5 scientific papers (total in 5 papers)

Construction of the solvability set in differential games with simple motions and nonconvex terminal set

L. V. Kamnevaab, V. S. Patskoab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (246 kB) Citations (5)
References:
Abstract: We consider planar zero-sum differential games with simple motions, fixed terminal time, and polygonal terminal set. The geometric constraint on the control of each player is a convex polygonal set or a straight line segment. In the case of a convex terminal set, an explicit formula is known for the solvability set (the level set of the value function, maximal $u$-stable bridge, viability set). The algorithm corresponding to this formula is based on the set operations of algebraic sum and geometric difference (the Minkowski difference). We propose an algorithm for the exact construction of the solvability set in the case of a nonconvex polygonal terminal set. The algorithm does not involve the additional partition of the time interval and the recovery of intermediate solvability sets at additional instants. A list of half-spaces in the three-dimensional space of time and state coordinates is formed and processed by a finite recursion. The list is based on the polygonal terminal set with the use of normals of the polygonal constraints on the controls of the players.
Keywords: differential games with simple motions in the plane, solvability set, backward procedure.
Received: 19.12.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 301, Issue 1, Pages 57–71
DOI: https://doi.org/10.1134/S008154381805005X
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: L. V. Kamneva, V. S. Patsko, “Construction of the solvability set in differential games with simple motions and nonconvex terminal set”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 1, 2017, 143–157; Proc. Steklov Inst. Math. (Suppl.), 301, suppl. 1 (2018), 57–71
Citation in format AMSBIB
\Bibitem{KamPat17}
\by L.~V.~Kamneva, V.~S.~Patsko
\paper Construction of the solvability set in differential games with simple motions and nonconvex terminal set
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 1
\pages 143--157
\mathnet{http://mi.mathnet.ru/timm1390}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-1-143-157}
\elib{https://elibrary.ru/item.asp?id=28409374}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 301
\issue , suppl. 1
\pages 57--71
\crossref{https://doi.org/10.1134/S008154381805005X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453520500013}
Linking options:
  • https://www.mathnet.ru/eng/timm1390
  • https://www.mathnet.ru/eng/timm/v23/i1/p143
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :70
    References:67
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024